Algebraic Geometry Fall 2018 Homework 1

W.R. Casper

Due Wednesday Aug 29 (start of class)

Throughout A will denote a commutative ring with identity.

Problem 1. Describe $\operatorname{spec}(A)$ as a set for each of the following rings. Try to both explicitly describe the members and draw an intuitive picture.

- (a) $A = \mathbb{R}[x]$
- (b) $A = \mathbb{F}_2[x]$
- (c) $A = \mathbb{Z}/60\mathbb{Z}$ (Hint: Chinese remainder theorem)

Problem 2. Recall that for every subset $S \subseteq A$, the vanishing set of S is defined to be

$$V(S) = \{ \mathfrak{p} \in \operatorname{spec}(A) : S \subseteq \mathfrak{p} \}$$

and that every Zariski open subset is the complement of a set of this form. Prove that the collection of Zariski open sets $\tau = \{V(S)' : S \subseteq A\}$ defines a topology on the set spec(A). Specifically show

- (a) \varnothing and spec(A) are elements of τ
- (b) Any union of elements of τ belongs to τ
- (c) Any finite intersection of elements of τ belongs to τ

(Hint: use the fact that V(S) = V(I) for I the ideal of A generated by S)

Problem 3. Give (with proof) an example of a ring A with spec(A) connected but reducible.

Problem 4. Consider the prime ideal $\mathfrak{p} = (y - x^2)$ of $A = \mathbb{C}[x, y]$.

- 1. Explain why the closure $\{\mathfrak{p}\}$ of $\{\mathfrak{p}\}$ in spec(A) is $V(\mathfrak{p})$ (equivalently, \mathfrak{p} is a generic point of $V(\mathfrak{p})$).
- 2. Prove that $V(\mathfrak{p}) = \{(x a, y a^2) : a \in \mathbb{C}\} \cup \{\mathfrak{p}\}.$