Algebraic Geometry Fall 2018 Homework 2

W.R. Casper

Due Wednesday Sept 12 (start of class)

Problem 1. Consider the set of 2 x 3 circulant, complex-valued matrices of
rank at most 1:

V= {A: ( arodz 4 ) € M;5(C) : tk(A) < 1}.

aq a; az

We can identify V with a subset of A} by sending

ap Gz as
= (a1,a92,03,04).
( ay a; a ( 1, W2, W3, 4)

(a) Show that V is an algebraic set by showing that it is the zero set
of a collection of three homogeneous polynomials of degree 2 in R =
(C[xlu X2, T3, .T4].

(b) Show that I(V) is the ideal of R generated by the polynomials from (a).

(c) Show that the affine coordinate ring R/I(V') of V is an integral domain
and therefore that V' is itself an affine variety.

(d) Show that the dimension of V' is 2. This is interesting, since we showed
V to be the intersection of three hypersurfaces in A*. Are there two
hypersurfaces in A* whose intersection is V? In other words, can V be
expressed as the zero set of two polynomials in R?

Solution 1.

(a) The rank of the 2 x 3 matrix

A= ( 1 T2 T3 ) c M372((C)

Ty X1 T2

is less than 2 if and only if all of the 2 x 2 minors of A vanish. Thus V
is the subset of A¢ determined by

V = Z(23 — w924, T3 — 1173, 1179 — T374).
(b) Let J be the ideal generated by the three homogeneous polynomials from
(a). SInce Z(J) =V, we know that J C I(V) and so it suffices to prove
I(V) € J. One may readily check that any monomial in C|xy, 29, x5, 4]
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is equivalent modulo J to a monomial of the form z§'z}, z,x5'x), or
xoxg'xy. Thus any f is of the form

f= Z (A5 Ty 4 D125 T + Cp@oxy wy)  mod J. (1)

m,n

If f € I(V), then for any s,t € C the point (ts?, t%s,t3,s%) € V and
therefore

0= f(t827 t287 t3, 83) _ Z (amnt3m83n + bmnt3m+183n+2 + cmnt3m+283n+1)

m,n

The expression on the right hand side is a polynomial in s and ¢ whose
zero set is every point of A%, so by Weak Nullstellensatz it is the zero
polynomial. It follows that the coefficients @y, byn, Cmn are all identi-
cally zero. Hence f(x1,22,x3,24) = 0 mod J ie. f(x1,x9,23,24) € J
and this proves I(V) C J.

Taking our cue from (b), we consider the ring homomorphism

¢ : Clay, x2, w3, 24] — Clyr, ya], f(w1, 29,23, 74) = f(Y195, Yiy2, U3, Ys).

If f € J, then since (ts%,t2s,t3,s3) € V for all s,t € C, we know that the
zero set of f(y1y3, yiye, y7, y5) is AZ and therefore f(y1y3, yiye, v, vs) is
identically zero by weak Nullstellensatz. Conversely, if f(y1v2, Y3y, Y3, ys)
0, then by the same argument made in (b) we know f € J. Hence
ker(p) = J and thus ¢ defines an injection of the ring of regular func-
tions A(V) = Clxy,xa, x3,24]/1(V) into Clyr,ys]. In particular since
Cly1, y2] is an integral domain, so too is A(V') and consequently I(V) is
a prime ideal and V' is a variety.

The image B of A(V) in Cly;,ys] is generated by y3, y2y2, y193, ys and
therefore the fraction field K (B) of B is C(y2/y1,%3). This is an extension
of C of transcendence degree 2, so the Krull dimension of B (and therefore
A(V)) is 2. Hence the dimension of YV is 2.

The variety V' can be generated by two polynomials. To see this, consider
the following 2 x 2 and 2 x 3 matrices A and B:

ry T2 I3
r1 T2 I3

A= y B = Ty T1 T2
Ty T1 T2

Ty I3 0



If 22 = xyx4 then B is nonsingular if and only if A has rank 2. Conse-
quently V is the zero set of det(B) and x? — zox4, ie

V= Z(ﬂﬁ — Loy, (ﬂfg — X321) %y — (T129 — T3%4)T3).

This shows that V' is the intersection of two hypersurfaces in A% but, not
ideal-wise (or scheme-wise for that matter).

Problem 2. Let X and Y be topological spaces, and for each open subset
U of X let
hy (U) = {continuous functions f: U — Y'}.

and for V C U C X let
resyyv : hy(U) — hy(V), f —> f|V

Show that hy is a sheaf.

Solution 2. Note that hy (@) = {@}, and that for any f : U — Y we have
respu(f) = flv = f and resyw (resyv (f)) = resvw (flv) = (fv)lw = fw =
resyw (f) so that hy is a presheaf.

U =,V;and f,g: U — Y satisty f|v, = g|y; for all i, then f = g,
so we have uniqueness. Furthermore, if f; : V; — Y is continuous for all ¢
and fi|lv,nu; = fjlviny, for all @ # j then the function f : U — Y defined by
f(z) = fi(x) if © € U; is well-defined. Furthermore, it’s continuous since for
any x € U there is a neighborhood U; of « where f agrees with the continuous
function f;. Thus we have gluing and this shows F is a sheaf.

Problem 3. Let X and Y be topological spaces, f : X — Y a continuous
function, and F is a presheaf on X. Show that

fFU) = F(fH(U))

with the obvious restriction map is a presheaf on Y. Show that if F is a
sheaf, so is f,F. This (pre)sheaf is called the push-forward of F.

Solution 3. The map U — f~'(U) defines a covariant functor G : Open(Y) —
Open(X) and f,F is precisely the composition of functors F : Open(X) —
Sets, ie. f.F = Fo(G. Inparticular f,F is a contravariant functor Open(X) —
Sets, ie. a presheaf.



Now assume F is a sheaf. Suppose that V' = |, V; for some open sets V, V;
of Y and let U; = f~(V;) and U = f~1(V). If s,t € f,.F(V) = F(U) with
resyy, (s) = resyy; (t) for all ¢ then since resyy, = resyy, we have resyy,(s) =
resyy;, (t) for all i. Since F is a sheaf, it follows that s = ¢. Similarly, given
s; € [Fi(Vi) with resy, v;av;, (si) = resy, v,av; (s;) for all ¢ # j then we have
resy, vnu; (8i) = resy, v,nu, (s;) for all i # j. Since F is a sheaf, it follows that
there exists s € F(U) such that resy,(s) = s; for all . Hence resyy;(s) = s;
for all 4. This proves that we have uniqueness and gluing for f,JF and so it
is a sheaf.

Problem 4. Let X be a topological space, that F is a presheaf on X and
that G is a sheaf on X. Show that

Hom(F,G)(U) := {sheaf morphisms F|y — G|v}

with the obvious restriction map is a sheaf. Note that here F|y denotes F
restricted to the topological space U, and similarly for G. The sheaf Hom is
called “sheaf Hom”.

Solution 4. Just do the usual thing.



