
Algebraic Geometry Fall 2018 Homework 2

W.R. Casper

Due Wednesday Sept 12 (start of class)

Problem 1. Consider the set of 2× 3 circulant, complex-valued matrices of
rank at most 1:

V =

{
A =

(
a1 a2 a3
a4 a1 a2

)
∈M3,2(C) : rk(A) ≤ 1

}
.

We can identify V with a subset of A4
C by sending(

a1 a2 a3
a4 a1 a2

)
7→ (a1, a2, a3, a4).

(a) Show that V is an algebraic set by showing that it is the zero set
of a collection of three homogeneous polynomials of degree 2 in R =
C[x1, x2, x3, x4].

(b) Show that I(V ) is the ideal of R generated by the polynomials from (a).

(c) Show that the affine coordinate ring R/I(V ) of V is an integral domain
and therefore that V is itself an affine variety.

(d) Show that the dimension of V is 2. This is interesting, since we showed
V to be the intersection of three hypersurfaces in A4. Are there two
hypersurfaces in A4 whose intersection is V ? In other words, can V be
expressed as the zero set of two polynomials in R?

Solution 1.

(a) The rank of the 2× 3 matrix

A =

(
x1 x2 x3

x4 x1 x2

)
∈M3,2(C)

is less than 2 if and only if all of the 2× 2 minors of A vanish. Thus V
is the subset of A4

C determined by

V = Z(x2
1 − x2x4, x

2
2 − x1x3, x1x2 − x3x4).

(b) Let J be the ideal generated by the three homogeneous polynomials from
(a). SInce Z(J) = V , we know that J ⊆ I(V ) and so it suffices to prove
I(V ) ⊆ J . One may readily check that any monomial in C[x1, x2, x3, x4]
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is equivalent modulo J to a monomial of the form xm
3 x

n
4 , x1x

m
3 x

n
4 , or

x2x
m
3 x

n
4 . Thus any f is of the form

f =
∑
m,n

(amnx
m
3 x

n
4 + bmnx1x

m
3 x

n
4 + cmnx2x

m
3 x

n
4 ) mod J. (1)

If f ∈ I(V ), then for any s, t ∈ C the point (ts2, t2s, t3, s3) ∈ V and
therefore

0 = f(ts2, t2s, t3, s3) =
∑
m,n

(
amnt

3ms3n + bmnt
3m+1s3n+2 + cmnt

3m+2s3n+1
)

The expression on the right hand side is a polynomial in s and t whose
zero set is every point of A2

C, so by Weak Nullstellensatz it is the zero
polynomial. It follows that the coefficients amn, bmn, cmn are all identi-
cally zero. Hence f(x1, x2, x3, x4) = 0 mod J ie. f(x1, x2, x3, x4) ∈ J
and this proves I(V ) ⊆ J .

(c) Taking our cue from (b), we consider the ring homomorphism

ϕ : C[x1, x2, x3, x4]→ C[y1, y2], f(x1, x2, x3, x4) 7→ f(y1y
2
2, y

2
1y2, y

3
1, y

3
2).

If f ∈ J , then since (ts2, t2s, t3, s3) ∈ V for all s, t ∈ C, we know that the
zero set of f(y1y

2
2, y

2
1y2, y

3
1, y

3
2) is A2

C and therefore f(y1y
2
2, y

2
1y2, y

3
1, y

3
2) is

identically zero by weak Nullstellensatz. Conversely, if f(y1y
2
2, y

2
1y2, y

3
1, y

3
2) =

0, then by the same argument made in (b) we know f ∈ J . Hence
ker(ϕ) = J and thus ϕ defines an injection of the ring of regular func-
tions A(V ) = C[x1, x2, x3, x4]/I(V ) into C[y1, y2]. In particular since
C[y1, y2] is an integral domain, so too is A(V ) and consequently I(V ) is
a prime ideal and V is a variety.

(d) The image B of A(V ) in C[y1, y2] is generated by y31, y
2
1y2, y1y

2
2, y

3
2 and

therefore the fraction field K(B) of B is C(y2/y1, y
3
1). This is an extension

of C of transcendence degree 2, so the Krull dimension of B (and therefore
A(V )) is 2. Hence the dimension of Y is 2.

The variety V can be generated by two polynomials. To see this, consider
the following 2× 2 and 2× 3 matrices A and B:

A =

(
x1 x2 x3

x4 x1 x2

)
, B =

 x1 x2 x3

x4 x1 x2

x2 x3 0

 .
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If x2
1 = x2x4 then B is nonsingular if and only if A has rank 2. Conse-

quently V is the zero set of det(B) and x2
1 − x2x4, ie

V = Z(x2
1 − x2x4, (x

2
2 − x3x1)x2 − (x1x2 − x3x4)x3).

This shows that V is the intersection of two hypersurfaces in A4
C but, not

ideal-wise (or scheme-wise for that matter).

Problem 2. Let X and Y be topological spaces, and for each open subset
U of X let

hY (U) = {continuous functions f : U → Y }.

and for V ⊆ U ⊆ X let

resU,V : hY (U)→ hY (V ), f 7→ f |V .

Show that hY is a sheaf.

Solution 2. Note that hY (∅) = {∅}, and that for any f : U → Y we have
resU,U(f) = f |U = f and resV,W (resU,V (f)) = resV,W (f |V ) = (f |V )|W = fW =
resU,W (f) so that hY is a presheaf.

If U =
⋃

i Vi and f, g : U → Y satisfy f |Vi
= g|Vi

for all i, then f = g,
so we have uniqueness. Furthermore, if fi : Vi → Y is continuous for all i
and fi|Ui∩Uj

= fj|Ui∩Uj
for all i 6= j then the function f : U → Y defined by

f(x) = fi(x) if x ∈ Ui is well-defined. Furthermore, it’s continuous since for
any x ∈ U there is a neighborhood Ui of x where f agrees with the continuous
function fi. Thus we have gluing and this shows F is a sheaf.

Problem 3. Let X and Y be topological spaces, f : X → Y a continuous
function, and F is a presheaf on X. Show that

f∗F(U) = F(f−1(U))

with the obvious restriction map is a presheaf on Y . Show that if F is a
sheaf, so is f∗F . This (pre)sheaf is called the push-forward of F .

Solution 3. The map U 7→ f−1(U) defines a covariant functor G : Open(Y )→
Open(X) and f∗F is precisely the composition of functors F : Open(X) →
Sets, ie. f∗F = F◦G. In particular f∗F is a contravariant functor Open(X)→
Sets, ie. a presheaf.
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Now assume F is a sheaf. Suppose that V =
⋃

i Vi for some open sets V, Vi

of Y and let Ui = f−1(Vi) and U = f−1(V ). If s, t ∈ f∗F(V ) = F(U) with
resV Vi

(s) = resV Vi
(t) for all i then since resV Vi

= resUUi
we have resUUi

(s) =
resUUi

(t) for all i. Since F is a sheaf, it follows that s = t. Similarly, given
si ∈ f∗Fi(Vi) with resVi,Vi∩Vj

(si) = resVj ,Vi∩Vj
(sj) for all i 6= j then we have

resUi,Ui∩Uj
(si) = resUi,Ui∩Uj

(sj) for all i 6= j. Since F is a sheaf, it follows that
there exists s ∈ F(U) such that resU,Ui

(s) = si for all i. Hence resV,Vi
(s) = si

for all i. This proves that we have uniqueness and gluing for f∗F and so it
is a sheaf.

Problem 4. Let X be a topological space, that F is a presheaf on X and
that G is a sheaf on X. Show that

Hom(F ,G)(U) := {sheaf morphisms F|U → G|U}

with the obvious restriction map is a sheaf. Note that here F|U denotes F
restricted to the topological space U , and similarly for G. The sheaf Hom is
called “sheaf Hom”.

Solution 4. Just do the usual thing.
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