Algebraic Geometry Fall 2018 Homework 2

W.R. Casper

Due Wednesday Sept 12 (start of class)

Problem 1. Consider the set of 2×3 circulant, complex-valued matrices of rank at most 1:

$$
V = \left\{ A = \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_1 & a_2 \end{pmatrix} \in M_{3,2}(\mathbb{C}) : \text{rk}(A) \le 1 \right\}.
$$

We can identify V with a subset of $\mathbb{A}_{\mathbb{C}}^4$ by sending

$$
\left(\begin{array}{cc} a_1 & a_2 & a_3 \\ a_4 & a_1 & a_2 \end{array}\right) \mapsto (a_1, a_2, a_3, a_4).
$$

- (a) Show that V is an algebraic set by showing that it is the zero set of a collection of three homogeneous polynomials of degree 2 in $R =$ $\mathbb{C}[x_1, x_2, x_3, x_4].$
- (b) Show that $I(V)$ is the ideal of R generated by the polynomials from (a).
- (c) Show that the affine coordinate ring $R/I(V)$ of V is an integral domain and therefore that V is itself an affine variety.
- (d) Show that the dimension of V is 2. This is interesting, since we showed V to be the intersection of three hypersurfaces in \mathbb{A}^4 . Are there two hypersurfaces in \mathbb{A}^4 whose intersection is V? In other words, can V be expressed as the zero set of two polynomials in R?

Solution 1.

(a) The rank of the 2×3 matrix

$$
A = \left(\begin{array}{ccc} x_1 & x_2 & x_3 \\ x_4 & x_1 & x_2 \end{array}\right) \in M_{3,2}(\mathbb{C})
$$

is less than 2 if and only if all of the 2×2 minors of A vanish. Thus V is the subset of $\mathbb{A}_{\mathbb{C}}^4$ determined by

$$
V = Z(x_1^2 - x_2x_4, x_2^2 - x_1x_3, x_1x_2 - x_3x_4).
$$

(b) Let J be the ideal generated by the three homogeneous polynomials from (a). Since $Z(J) = V$, we know that $J \subseteq I(V)$ and so it suffices to prove $I(V) \subseteq J$. One may readily check that any monomial in $\mathbb{C}[x_1, x_2, x_3, x_4]$

is equivalent modulo J to a monomial of the form $x_3^m x_4^n$, $x_1 x_3^m x_4^n$, or $x_2x_3^m x_4^n$. Thus any f is of the form

$$
f = \sum_{m,n} \left(a_{mn} x_3^m x_4^n + b_{mn} x_1 x_3^m x_4^n + c_{mn} x_2 x_3^m x_4^n \right) \mod J. \tag{1}
$$

If $f \in I(V)$, then for any $s, t \in \mathbb{C}$ the point $(ts^2, t^2s, t^3, s^3) \in V$ and therefore

$$
0 = f(ts^2, t^2s, t^3, s^3) = \sum_{m,n} (a_{mn}t^{3m}s^{3n} + b_{mn}t^{3m+1}s^{3n+2} + c_{mn}t^{3m+2}s^{3n+1})
$$

The expression on the right hand side is a polynomial in s and t whose zero set is every point of $\mathbb{A}_{\mathbb{C}}^2$, so by Weak Nullstellensatz it is the zero polynomial. It follows that the coefficients a_{mn}, b_{mn}, c_{mn} are all identically zero. Hence $f(x_1, x_2, x_3, x_4) = 0 \mod J$ ie. $f(x_1, x_2, x_3, x_4) \in J$ and this proves $I(V) \subseteq J$.

(c) Taking our cue from (b), we consider the ring homomorphism

 $\varphi : \mathbb{C}[x_1, x_2, x_3, x_4] \to \mathbb{C}[y_1, y_2], f(x_1, x_2, x_3, x_4) \mapsto f(y_1 y_2^2, y_1^2 y_2, y_1^3, y_2^3).$

If $f \in J$, then since $(ts^2, t^2s, t^3, s^3) \in V$ for all $s, t \in \mathbb{C}$, we know that the zero set of $f(y_1y_2^2, y_1^2y_2, y_1^3, y_2^3)$ is $\mathbb{A}_{\mathbb{C}}^2$ and therefore $f(y_1y_2^2, y_1^2y_2, y_1^3, y_2^3)$ is identically zero by weak Nullstellensatz. Conversely, if $f(y_1y_2^2, y_1^2y_2, y_1^3, y_2^3)$ = 0, then by the same argument made in (b) we know $f \in J$. Hence $\ker(\varphi) = J$ and thus φ defines an injection of the ring of regular functions $A(V) = \mathbb{C}[x_1, x_2, x_3, x_4]/I(V)$ into $\mathbb{C}[y_1, y_2]$. In particular since $\mathbb{C}[y_1, y_2]$ is an integral domain, so too is $A(V)$ and consequently $I(V)$ is a prime ideal and V is a variety.

(d) The image B of $A(V)$ in $\mathbb{C}[y_1, y_2]$ is generated by $y_1^3, y_1^2y_2, y_1y_2^2, y_2^3$ and therefore the fraction field $K(B)$ of B is $\mathbb{C}(y_2/y_1, y_1^3)$. This is an extension of $\mathbb C$ of transcendence degree 2, so the Krull dimension of B (and therefore $A(V)$ is 2. Hence the dimension of Y is 2.

The variety V can be generated by two polynomials. To see this, consider the following 2×2 and 2×3 matrices A and B:

$$
A = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_1 & x_2 \end{pmatrix}, \quad B = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_1 & x_2 \\ x_2 & x_3 & 0 \end{pmatrix}.
$$

If $x_1^2 = x_2x_4$ then B is nonsingular if and only if A has rank 2. Consequently V is the zero set of $\det(B)$ and $x_1^2 - x_2x_4$, ie

$$
V = Z(x_1^2 - x_2x_4, (x_2^2 - x_3x_1)x_2 - (x_1x_2 - x_3x_4)x_3).
$$

This shows that V is the intersection of two hypersurfaces in $\mathbb{A}_{\mathbb{C}}^4$ but, not ideal-wise (or scheme-wise for that matter).

Problem 2. Let X and Y be topological spaces, and for each open subset U of X let

 $h_Y(U) = \{\text{continuous functions } f: U \to Y\}.$

and for $V \subseteq U \subseteq X$ let

$$
res_{U,V}: h_Y(U) \to h_Y(V), \quad f \mapsto f|_V.
$$

Show that h_Y is a sheaf.

Solution 2. Note that $h_Y(\emptyset) = \{\emptyset\}$, and that for any $f: U \to Y$ we have $res_{U,U}(f) = f|_{U} = f$ and $res_{V,W}(res_{U,V}(f)) = res_{V,W}(f|_{V}) = (f|_{V})|_{W} = f_{W} =$ res_{U,W} (f) so that h_Y is a presheaf.

If $U = \bigcup_i V_i$ and $f, g: U \to Y$ satisfy $f|_{V_i} = g|_{V_i}$ for all i, then $f = g$, so we have uniqueness. Furthermore, if $f_i: V_i \to Y$ is continuous for all i and $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ for all $i \neq j$ then the function $f: U \to Y$ defined by $f(x) = f_i(x)$ if $x \in U_i$ is well-defined. Furthermore, it's continuous since for any $x \in U$ there is a neighborhood U_i of x where f agrees with the continuous function f_i . Thus we have gluing and this shows $\mathcal F$ is a sheaf.

Problem 3. Let X and Y be topological spaces, $f: X \to Y$ a continuous function, and $\mathcal F$ is a presheaf on X. Show that

$$
f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U))
$$

with the obvious restriction map is a presheaf on Y. Show that if $\mathcal F$ is a sheaf, so is $f_*\mathcal{F}$. This (pre)sheaf is called the push-forward of \mathcal{F} .

Solution 3. The map $U \mapsto f^{-1}(U)$ defines a covariant functor $G : \text{Open}(Y) \rightarrow$ Open(X) and $f_*\mathcal{F}$ is precisely the composition of functors $\mathcal{F}: \text{Open}(X) \to$ Sets, ie. $f_*\mathcal{F} = \mathcal{F} \circ G$. In particular $f_*\mathcal{F}$ is a contravariant functor $\mathrm{Open}(X) \to$ Sets, ie. a presheaf.

Now assume $\mathcal F$ is a sheaf. Suppose that $V = \bigcup_i V_i$ for some open sets V, V_i of Y and let $U_i = f^{-1}(V_i)$ and $U = f^{-1}(V)$. If $s, t \in f_*\mathcal{F}(V) = \mathcal{F}(U)$ with $res_{VV_i}(s) = res_{VV_i}(t)$ for all i then since $res_{VV_i} = res_{UU_i}$ we have $res_{UU_i}(s) =$ res_{UU_i}(*t*) for all *i*. Since $\mathcal F$ is a sheaf, it follows that $s = t$. Similarly, given $s_i \in f_*\mathcal{F}_i(V_i)$ with $res_{V_i,V_i \cap V_j}(s_i) = res_{V_j,V_i \cap V_j}(s_j)$ for all $i \neq j$ then we have $res_{U_i, U_i \cap U_j}(s_i) = res_{U_i, U_i \cap U_j}(s_j)$ for all $i \neq j$. Since F is a sheaf, it follows that there exists $s \in \mathcal{F}(U)$ such that $res_{U,U_i}(s) = s_i$ for all i. Hence $res_{V,V_i}(s) = s_i$ for all *i*. This proves that we have uniqueness and gluing for $f_*\mathcal{F}$ and so it is a sheaf.

Problem 4. Let X be a topological space, that $\mathcal F$ is a presheaf on X and that $\mathcal G$ is a sheaf on X. Show that

$$
\mathcal{H}\text{om}(\mathcal{F},\mathcal{G})(U) := \{\text{sheaf morphisms }\mathcal{F}|_U \to \mathcal{G}|_U\}
$$

with the obvious restriction map is a sheaf. Note that here $\mathcal{F}|_U$ denotes \mathcal{F} restricted to the topological space U, and similarly for G . The sheaf \mathcal{H} *om* is called "sheaf Hom".

Solution 4. Just do the usual thing.