Algebraic Geometry Fall 2018 Homework 3

W.R. Casper

Due Wednesday Sept 19 (start of class)

Problem 1. Let (X, 7) be a topological space and let § C 7 be a basis for
7. A sheaf on the basis 3 is a function

F : B — Sets

along with a collection of functions resyy : F(U) — F(V) for all U,V € 8
with V' C U satisfying the following five axioms.

0) F(2) = singleton if & €
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(0)

(1) resyy = identity for all U €

(2) resyw =resyw oresyy for all U, V,W € 3
(3)

3) if U € § and {U;} is an open covering of U by elements of § and if
f,9 € F(U) with resyp,(f) = resyp,(g) for all 4, then f =g

(4) if U € B and {U;} is an open covering of U by elements of 5 and if
fi € F(U;) with resy, w(fi) = resy, w(f;) for all i, and W € 8 with
W C U; N Uj, then there exists f € F(U) with resy,(f) = fi for all 4

Prove that any sheaf on the basis § extends uniquely to a sheaf on X.

Solution 1. Without loss of generality, we take @ € 3. The extension of F
may be defined in terms of limits. For each U € 7\, define

FU) = Velﬁljr‘l;lgj F(V).

By this we mean that F(U) is a set with a collection of maps resyy : F(U) —
F (V) satistying the condition that if W,V € g with W C V then respw =
resyw oresyy. Moreover, F(U) is universal in the sense that if S is another
set with a collection of maps fy : S — F(V) for all V € [ satisfying
fw =resywofy forall VW € g with W C V| then there exists a unique map

v S — G(U) satistying fiy = resyy o gy for all Ve g with V. C U. Note
that the choice of set F(U) and maps resyy is not unique, but is unique up
to unique isomorphism by the universal property. Therefore in our extension
of F: B — Sets to F : 7 — Sets we are at this point choosing a fixed limit
for each U € 7\B. If U,V € 7\ we also define resyy : F(U) — F(V) to be

the unique map obtained from the universal property above.



Note that if we want to construct F(U) very concretely, we can take an
open cover {V;} C 5 of U and define

F(U) ={(si) € H]:(Vi) : VW e B, W C V;NV; we have resy, w(s;) = resy, w(s;)}

We can explicitly construct the restriction map accordingly.

Obviously F(@) = singleton by (0). Moreover, by the uniqueness part
of the universal property or (1), resyy = idy for all U € 7. Furthermore,
by the universal property or (2), resyw = resy,w oresyy for all U, V.W € 7
with W C V C U. Thus F is a presheaf.

To prove that F is a sheaf, we require two observations which follow
immediately from the universal property of a limit. First is that if s,¢ € F(U)
with resy v (s) = resyv(t) forall V € g with V' C U then s = t. The second is
that if for all V € g with V' C U we have an sy € F(V') and resy,w (sy) = sw
for all W,V € g with W C V C U, then there exists s € F(U) such that
respy(s) = sy forall V e .

Suppose s,t € F(U) and there exist {U;} C 7 covering U such that
resy u, (s) = resyy, (t) for all 7. Then for all V' C U, we can cover each U; NV
with a collection of {Vj;} C 3 and then resy,y;, (resy,v(s)) = resyy;, (resy,v (t))
for all 4, so that resyy(s) = resyy(t) for all V. C U by property (3). It
follows that s = t.

Next, suppose that U € 7 and {U;} C 7 covers U and that there exists
s; € F(U;) such that resy, v,nu, (si) = resy, v,nv,(s;) for all i # j. Then for
any V' C U we can cover U; NV with {Vj;} C B. Set s;; = resy, v, (s;) and
note that for all W C V;; N Vi,

resv,; w(sij) = resy, w(si) = resy,nu,,w(resu, v,nv, (8i))
= resy;nu,, w (tesu, vinu, (Sk)) = resy, w(sk) = resv,,w(ske)-

Therefore since the V;; cover V, (4) tells us there exists sy € V satisfying
resy,y, (sv) = sy for all 4,5. If VW € B with W C V C U, then sy =
resyw (sy) and therefore there exists s € U such that resyy (s) = sy for all
V € g with V C U. The uniqueness result of the previous paragraph implies
that resyp,(s) = s; for all i. This proves F is a sheaf.

Now if G is any other sheaf on X satisfying G(V) = F(V) for all V € 3
then the sheaf properties of G imply that G(U) will be a limit of F(V') for
V e g with V C U. Therefore for all U there will exist a unique bijection
F(U) — G(U) which is compatible with restriction. This is obviously a sheaf
isomorphism, so the extension F is unique up to unique isomorphism.
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Problem 2. Let R be a ring, let M be an R-module, and let X = spec(R)
with the Zariski topology. For any r € R define

—

M(D(r)) ={s"'m: m e M,s € R, with Z({s}) € Z({r})}
and for r, s € R with D(s) C D(r) let resp(),p(s) be the natural map.
(a) Prove that M(D(T)) =M, forallr € R

(b) Prove that M defines a sheaf on the basis 8 = {D(r) : r € R} of the
Zariski topology, and therefore extends uniquely to a sheaf M on X

(c) Prove that the stalk of M at a point p € spec(R) is M,

Note that in the case M = R, the construction R is the structure sheaf Ox.
Solution 2.

(a) The module M(D(r)) is M localized at the multiplicative set S = {s :
Z({s}) € Z({r})}. There is a natural R-module homomorphism M, —
M (D(r)), induced by the inclusion {r" : n > 0} C S.
Now suppose that m/r™ maps to zero in M(D(r)). Then sm = 0 for
some s € S and it follows that for some j > 0 and a € R that r’m =
asm = 0 and therefore m/r™ = 0 in M,. Thus the map M, — M(D(r))
is injective. Next, suppose m/s € M(D(r)). Again we may write r/ = as
for some s, j and it follows that am/r? maps to m/s in M(D(r)) Thus
the map is an isomorphism.

(b) Properties (0-2) are obvious from the definitions. Property (3-4) may
be reduced to the case that U = spec(R) and {U;} = {D(f;)};_, with
(f1,..., fr) = R. They then follow from the exactness of the sequence of
R-modules

0_>M_>HMfz MHMfzfy
i i#]j

(¢) Since {D(r) : r € R} forms a basis, the stalk can be calculated as the
limit

M, = colimyep(ry M, .



For each r € R with p € D(r), there is a localization map M, — M,, so

the universal property of colimits implies the existence of a map M, —
M,. The inverse of this map is given by

M, — M,, m/r s (m/r,D(r)),
so it is an isomorphism.

Problem 3. Let X = spec(R) and Y = spec(S) be affine schemes. Prove
that there is a bijective correspondence

{morphisms of schemes X — Y} <— {homomorphisms of rings S — R}.

Show that this correspondence sends isomorphisms to isomorphisms.

Solution 3. Recall that Ox(X) = R and Oy(Y) = S. Suppose that
¢ : S — R is a ring homomorphism. We construct a map of schemes (f, f#)
from ¢ as follows. For any p € spec(R) we set f(p) = ¢ !(p). The preimage
of a prime ideal is prime, so f : X — Y makes sense as a map of sets.
Moroever, for any ideal a we have f~!(V(a)) = V(¢(a)) and so the preimages
of closed sets are closed and therefore f is continuous. For any s € S, we
have f~1(D(s)) = D(y(s)) and we define

f7 Oy (D(s)) = S5 = Sys) = Ox(D(p) = f.Ox(D(s))

to be the obvious localization map. If U C Y is an open set, then we may
choose si,...,s, such that the collection {D(s;)} cover U. It follows that
for 7; = (s;) the collection {D(r;)} covers f~1(U) and therefore we have a
commutative diagram

0

Oy (U)

[L; Oy (D(si)) — 11, Ov (D(sis;))
:3! Lf# Lf#

0—=Ox(f71(U)) —=11; Ox(D((r:))) — [ Li; Ox (D(rir;))

where the rows are exact and the vertical maps are the obvious localizations.
Hence there exists a unique ring homomorphism f# : Oy (U) — f.Ox(U)
making the above diagram commute. By definition, this map is compatible
with restriction and therefore (f, f#) defines a morphism of ringed spaces.
Furthermore, for ¢ = f(p) = ¢ '(p) the induced map on stalks is Sy — R,
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is the localization map induced by ¢ which sends q to ¢(q) C p and thus
(f, f#) is a morphism of locally ringed spaces ie. a morphism of schemes.

Conversely, given any morphism of schemes f : X — Y, restricting f# to
global sections defines a ring homomorphism f# : S — R. Its clear from the
previous construction that if (f, f#) is constructed from ¢, then f# : S — R
is precisely . Consequently the map taking homomorphisms S — R to
morphism of schemes X — Y is injective.

To prove surjectivity, we must show that if ¢ : X — Y is a morphism
of schemes and f : X — Y is the morphism of schemes constructed from
the ring homomorphism ¢ : S — R as before for ¢ = g%, then f = g. To
see this, we will work with stalks. Since g is a morphism of schemes, we
know that it is a map of locally ringd spaces: for any prime ideal p of R, the
induced map of stalks g# : S; — R, sends g(p) into p. Localization gives us
a commutative diagram:

S—% . R

|,

Sg(P) — R,

Since g% (g(p)) C p, and g(p) is maximal in Sy, we know that (¢#)~'(p) =
g(p). In turn, the commutativity of the above diagram shows ¢~ (p) = g(p).
Thus f and g agree as maps of topological spaces. This means that f,Ox =
g.Ox and therefore f#* — g# : Oy — ¢,Ox is a well-defined morphism of
schemes. The above shows that it is zero on stalks, and therefore must be
the zero morphism. Hence f# = ¢ and we have our bijection.

An isomorphism of schemes f : X — Y is a morphism of schemes (f, f)
where f : X — Y is a homeomorphism of topological spaces and f# :
Oy — f.Ox is an isomorphism of sheaves of rings. Thus by definition, if
f: X — Y is an isomorphism, then the associated map f# : S — R is a
ring isomorphism. Conversely, suppose that ¢ : S — R is an isomorphism of
rings and let f : X — Y be the induced morphism of schemes. Then as a
map of topological spaces p — ¢~ 1(p) has an inverse map q — ¢(q), which
are both continuous for the same reason outlined above. Hence f: X — Y
is a homeomorphism. Furthermore, since localization is exact we know that
f* 1 Oy(U) = Ox(f~YU)) will be an isomorphism for all U = D(s) and
hence for all open U C X. Thus f is an isomorphism of schemes.

Problem 4. Let X be a scheme and for all p € X let m;, denote the maximal
ideal of the local ring (Ox), (the stalk of the structure sheaf at p). For
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any f € Ox(X) we let f, denote the image of f under the natural map
Ox(X) — (Ox), and define

Xy={peX: f¢m}.
(a) Show that X is an open subscheme of X

(b) If X =spec(R) and r € Ox(X) = R, show that X, = D(r) and is affine
(in fact it is isomorphic to spec(A,) as a scheme)

(¢) Show that an open subset of an affine scheme is not necessarily affine

(eg. spec(Clz, y)\{(x,y)})

(d) Show that if Y is an affine scheme, then there exist global sections
S1y---, 8 € Oy (Y) with Yy, affine for all ¢ and sq,...,s, generates the
unit ideal on Oy (Y).

BONUS: Prove that (d) is actually an if and only if condition.
Solution 4.

(a) Let U; = spec(A;) be an affine open covering of X. Then for all 7, let
fi =resxu,(f) € Ox(spec(A;)) = A; and note

UiﬂXf:{pEUi:fpgémp}
= {p € spec(4;) : image of f under A — A, not in the maximal ideal}
= {p € spec(4;) : image of f under A — A, not in p}

= {p € spec(4;) : f & p} = D(f;) € spec(4;) € X.

Thus X; = (J,;(U; N Xy) = U, D(f;) which is a union of open sets and
therefore open.

(b) This is obvious from the calculation in (a)

(c) Let X = spec(Clz,y]) and U = X\{m} where m = (z,y) C C(x,y).
Since m is a maximal ideal in C[z,y], it is a closed point of X, and
therefore U is open. Recall that

Ox(U) = {f(x,9)/9(x,y) : f,9 € Cla,yl], D(g) CU}.

However, if D(g) C U then V(g) C {m} so the set {(a,b) € C*: g(a,b) =
0} consists of only the point (0,0). This implies that g is constant and
therefore Ox (U) = Clz,y].



If U is affine, ie. U = spec(A), then A must be Ox(U) and by the
previous problem the inclusion U — X corresponds to a ring homomor-
phism C[z,y] — Ox(U). However, A = spec(Cl[z,y]) and the ring ho-
momorphsim C[z,y] — Ox(U) is the identity. This means that U — X
is an isomorphism of schemes, which is obviously false since it’s not even
a bijection as sets. Hence U is a scheme which is not affine.

This is easy. If Y = spec(A), then the identity 1 € A = Oy(Y) is a
global section of Y and Y; = Y is affine and 1 generates the unit ideal
in A. The setup here was to make the bonus make sense, ie. so that the
converse statement also holds.

BONUS: Suppose that Y is a scheme and that there exist global sections
81,...,5 of Y with Y, affine for all 7 and with sq,...,s, generating the
unit ideal in Oy (Y)). For each i, let A; = Oy (Y;) and let A = Oy (Y') and
let s;; € A; be the image of s; under the restriction map to Y,,. By the
same calculation as in (a), we know that Y;, N Y,, = Y, is affine and
isomorphic to spec(4;;), where Ay = (A4;)s;, = (A4;)s,;- Then we have an
exact sequence of morphisms of schemes

S]Z

In terms of rings, we have an exact sequence of rings
O-)A-)HAZ M)HAU'
i i#]

However, this leads to a commutative diagram

Y 1LY, sV,

B

0 —— 0 ——spec(A) — L;spec(A4;) — I, ,;spec(4;))

where each of the rows is exact. By the five lemma, it follows that Y is
isomorphic to spec(A) and in particular is affine.



