
Algebraic Geometry Fall 2018 Homework 3

W.R. Casper

Due Wednesday Sept 19 (start of class)

Problem 1. Let (X, τ) be a topological space and let β ⊆ τ be a basis for
τ . A sheaf on the basis β is a function

F : β → Sets

along with a collection of functions resU,V : F(U) → F(V ) for all U, V ∈ β
with V ⊆ U satisfying the following five axioms.

(0) F(∅) = singleton if ∅ ∈ β

(1) resU,U = identity for all U ∈ β

(2) resU,W = resV,W ◦ resU,V for all U, V,W ∈ β

(3) if U ∈ β and {Ui} is an open covering of U by elements of β and if
f, g ∈ F(U) with resU,Ui

(f) = resU,Ui
(g) for all i, then f = g

(4) if U ∈ β and {Ui} is an open covering of U by elements of β and if
fi ∈ F(Ui) with resUi,W (fi) = resUj ,W (fj) for all i, j and W ∈ β with
W ⊆ Ui ∩ Uj, then there exists f ∈ F(U) with resU,Ui

(f) = fi for all i

Prove that any sheaf on the basis β extends uniquely to a sheaf on X.

Solution 1. Without loss of generality, we take ∅ ∈ β. The extension of F
may be defined in terms of limits. For each U ∈ τ\β, define

F(U) = lim
V ∈β,V⊆U

F(V ).

By this we mean that F(U) is a set with a collection of maps resU,V : F(U)→
F(V ) satisfying the condition that if W,V ∈ β with W ⊆ V then resU,W =
resV,W ◦ resU,V . Moreover, F(U) is universal in the sense that if S is another
set with a collection of maps fV : S → F(V ) for all V ∈ β satisfying
fW = resV,W◦fV for all V,W ∈ β withW ⊆ V , then there exists a unique map
gU : S → G(U) satisfying fV = resU,V ◦ gU for all V ∈ β with V ⊆ U . Note
that the choice of set F(U) and maps resU,V is not unique, but is unique up
to unique isomorphism by the universal property. Therefore in our extension
of F : β → Sets to F : τ → Sets we are at this point choosing a fixed limit
for each U ∈ τ\β. If U, V ∈ τ\β we also define resU,V : F(U)→ F(V ) to be
the unique map obtained from the universal property above.
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Note that if we want to construct F(U) very concretely, we can take an
open cover {Vi} ⊆ β of U and define

F(U) = {(si) ∈
∏
i

F(Vi) : ∀W ∈ β, W ⊆ Vi ∩ Vj we have resVi,W (si) = resVj ,W (sj)}.

We can explicitly construct the restriction map accordingly.
Obviously F(∅) = singleton by (0). Moreover, by the uniqueness part

of the universal property or (1), resU,U = idU for all U ∈ τ . Furthermore,
by the universal property or (2), resU,W = resV,W ◦ resU,V for all U, V,W ∈ τ
with W ⊆ V ⊆ U . Thus F is a presheaf.

To prove that F is a sheaf, we require two observations which follow
immediately from the universal property of a limit. First is that if s, t ∈ F(U)
with resU,V (s) = resU,V (t) for all V ∈ β with V ⊆ U then s = t. The second is
that if for all V ∈ β with V ⊆ U we have an sV ∈ F(V ) and resV,W (sV ) = sW
for all W,V ∈ β with W ⊆ V ⊆ U , then there exists s ∈ F(U) such that
resU,V (s) = sV for all V ∈ β.

Suppose s, t ∈ F(U) and there exist {Ui} ⊆ τ covering U such that
resU,Ui

(s) = resU,Ui
(t) for all i. Then for all V ⊆ U , we can cover each Ui ∩V

with a collection of {Vij} ⊆ β and then resV,Vij(resU,V (s)) = resV,Vij(resU,V (t))
for all i, j so that resU,V (s) = resU,V (t) for all V ⊆ U by property (3). It
follows that s = t.

Next, suppose that U ∈ τ and {Ui} ⊆ τ covers U and that there exists
si ∈ F(Ui) such that resUi,Ui∩Uj

(si) = resUj ,Ui∩Uj
(sj) for all i 6= j. Then for

any V ⊆ U we can cover Ui ∩ V with {Vij} ⊆ β. Set sij = resUi,Vij(si) and
note that for all W ⊆ Vij ∩ Vk`

resVij ,W (sij) = resUi,W (si) = resUi∩Uk,W (resUi,Ui∩Uk
(si))

= resUi∩Uk,W (resUk,Ui∩Uk
(sk)) = resUk,W (sk) = resVk`,W (sk`).

Therefore since the Vij cover V , (4) tells us there exists sV ∈ V satisfying
resV,Vij(sV ) = sij for all i, j. If V,W ∈ β with W ⊆ V ⊆ U , then sW =
resV,W (sV ) and therefore there exists s ∈ U such that resU,V (s) = sV for all
V ∈ β with V ⊆ U . The uniqueness result of the previous paragraph implies
that resU,Ui

(s) = si for all i. This proves F is a sheaf.
Now if G is any other sheaf on X satisfying G(V ) = F(V ) for all V ∈ β

then the sheaf properties of G imply that G(U) will be a limit of F(V ) for
V ∈ β with V ⊆ U . Therefore for all U there will exist a unique bijection
F(U)→ G(U) which is compatible with restriction. This is obviously a sheaf
isomorphism, so the extension F is unique up to unique isomorphism.
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Problem 2. Let R be a ring, let M be an R-module, and let X = spec(R)
with the Zariski topology. For any r ∈ R define

M̃(D(r)) = {s−1m : m ∈M, s ∈ R, with Z({s}) ⊆ Z({r})}

and for r, s ∈ R with D(s) ⊆ D(r) let resD(r),D(s) be the natural map.

(a) Prove that M̃(D(r)) ∼= Mr for all r ∈ R

(b) Prove that M̃ defines a sheaf on the basis β = {D(r) : r ∈ R} of the

Zariski topology, and therefore extends uniquely to a sheaf M̃ on X

(c) Prove that the stalk of M̃ at a point p ∈ spec(R) is Mp

Note that in the case M = R, the construction R̃ is the structure sheaf OX .

Solution 2.

(a) The module M̃(D(r)) is M localized at the multiplicative set S = {s :
Z({s}) ⊆ Z({r})}. There is a natural R-module homomorphism Mr →
M̃(D(r)), induced by the inclusion {rn : n > 0} ⊆ S.

Now suppose that m/rn maps to zero in M̃(D(r)). Then sm = 0 for
some s ∈ S and it follows that for some j > 0 and a ∈ R that rjm =
asm = 0 and therefore m/rn = 0 in Mr. Thus the map Mr → M̃(D(r))

is injective. Next, suppose m/s ∈ M̃(D(r)). Again we may write rj = as

for some s, j and it follows that am/rj maps to m/s in M̃(D(r)). Thus
the map is an isomorphism.

(b) Properties (0-2) are obvious from the definitions. Property (3-4) may
be reduced to the case that U = spec(R) and {Ui} = {D(fi)}ri=1 with
(f1, . . . , fr) = R. They then follow from the exactness of the sequence of
R-modules

0→M →
∏
i

Mfi

(mi)7→(mi−mj)−−−−−−−−−→
∏
i 6=j

Mfifj .

(c) Since {D(r) : r ∈ R} forms a basis, the stalk can be calculated as the
limit

M̃p = colimp∈D(r)Mr.
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For each r ∈ R with p ∈ D(r), there is a localization map Mr →Mp, so

the universal property of colimits implies the existence of a map M̃p →
Mp. The inverse of this map is given by

Mp → M̃p, m/r 7→ (m/r,D(r)),

so it is an isomorphism.

Problem 3. Let X = spec(R) and Y = spec(S) be affine schemes. Prove
that there is a bijective correspondence

{morphisms of schemes X → Y } ←→ {homomorphisms of rings S → R}.

Show that this correspondence sends isomorphisms to isomorphisms.

Solution 3. Recall that OX(X) = R and OY (Y ) = S. Suppose that
ϕ : S → R is a ring homomorphism. We construct a map of schemes (f, f#)
from ϕ as follows. For any p ∈ spec(R) we set f(p) = ϕ−1(p). The preimage
of a prime ideal is prime, so f : X → Y makes sense as a map of sets.
Moroever, for any ideal a we have f−1(V (a)) = V (φ(a)) and so the preimages
of closed sets are closed and therefore f is continuous. For any s ∈ S, we
have f−1(D(s)) = D(ϕ(s)) and we define

f# : OY (D(s)) = Ss → Sϕ(s) = OX(D(ϕ) = f∗OX(D(s))

to be the obvious localization map. If U ⊆ Y is an open set, then we may
choose s1, . . . , sr such that the collection {D(si)} cover U . It follows that
for ri = ϕ(si) the collection {D(ri)} covers f−1(U) and therefore we have a
commutative diagram

0 // OY (U) //

∃!
��

∏
iOY (D(si)) //

f#

��

∏
i 6=j OY (D(sisj))

f#

��
0 // OX(f−1(U)) //

∏
iOX(D(ϕ(ri))) //

∏
i 6=j OX(D(rirj))

where the rows are exact and the vertical maps are the obvious localizations.
Hence there exists a unique ring homomorphism f# : OY (U) → f∗OX(U)
making the above diagram commute. By definition, this map is compatible
with restriction and therefore (f, f#) defines a morphism of ringed spaces.
Furthermore, for q = f(p) = ϕ−1(p) the induced map on stalks is Sq 7→ Rp
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is the localization map induced by ϕ which sends q to ϕ(q) ⊆ p and thus
(f, f#) is a morphism of locally ringed spaces ie. a morphism of schemes.

Conversely, given any morphism of schemes f : X → Y , restricting f# to
global sections defines a ring homomorphism f# : S → R. Its clear from the
previous construction that if (f, f#) is constructed from ϕ, then f# : S → R
is precisely ϕ. Consequently the map taking homomorphisms S → R to
morphism of schemes X → Y is injective.

To prove surjectivity, we must show that if g : X → Y is a morphism
of schemes and f : X → Y is the morphism of schemes constructed from
the ring homomorphism ϕ : S → R as before for ϕ = g#, then f = g. To
see this, we will work with stalks. Since g is a morphism of schemes, we
know that it is a map of locally ringd spaces: for any prime ideal p of R, the
induced map of stalks g# : Sq → Rp sends g(p) into p. Localization gives us
a commutative diagram:

S

��

ϕ // R

��
Sg(p)

g# // Rp

Since g#(g(p)) ⊆ p, and g(p) is maximal in Sg(p), we know that (g#)−1(p) =
g(p). In turn, the commutativity of the above diagram shows ϕ−1(p) = g(p).
Thus f and g agree as maps of topological spaces. This means that f∗OX =
g∗OX and therefore f# − g# : OY → g∗OX is a well-defined morphism of
schemes. The above shows that it is zero on stalks, and therefore must be
the zero morphism. Hence f# = g# and we have our bijection.

An isomorphism of schemes f : X → Y is a morphism of schemes (f, f#)
where f : X → Y is a homeomorphism of topological spaces and f# :
OY → f∗OX is an isomorphism of sheaves of rings. Thus by definition, if
f : X → Y is an isomorphism, then the associated map f# : S → R is a
ring isomorphism. Conversely, suppose that ϕ : S → R is an isomorphism of
rings and let f : X → Y be the induced morphism of schemes. Then as a
map of topological spaces p 7→ ϕ−1(p) has an inverse map q 7→ ϕ(q), which
are both continuous for the same reason outlined above. Hence f : X → Y
is a homeomorphism. Furthermore, since localization is exact we know that
f# : OY (U) → OX(f−1(U)) will be an isomorphism for all U = D(s) and
hence for all open U ⊆ X. Thus f is an isomorphism of schemes.

Problem 4. Let X be a scheme and for all p ∈ X let mp denote the maximal
ideal of the local ring (OX)p (the stalk of the structure sheaf at p). For
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any f ∈ OX(X) we let fp denote the image of f under the natural map
OX(X)→ (OX)p and define

Xf = {p ∈ X : fp /∈ mp}.

(a) Show that Xf is an open subscheme of X

(b) If X = spec(R) and r ∈ OX(X) = R, show that Xr = D(r) and is affine
(in fact it is isomorphic to spec(Ar) as a scheme)

(c) Show that an open subset of an affine scheme is not necessarily affine
(eg. spec(C[x, y])\{(x, y)})

(d) Show that if Y is an affine scheme, then there exist global sections
s1, . . . , sr ∈ OY (Y ) with Ysi affine for all i and s1, . . . , sr generates the
unit ideal on OY (Y ).

BONUS: Prove that (d) is actually an if and only if condition.

Solution 4.

(a) Let Ui = spec(Ai) be an affine open covering of X. Then for all i, let
fi = resX,Ui

(f) ∈ OX(spec(Ai)) = Ai and note

Ui ∩Xf = {p ∈ Ui : fp /∈ mp}
= {p ∈ spec(Ai) : image of f under A→ Ap not in the maximal ideal}
= {p ∈ spec(Ai) : image of f under A→ Ap not in p}
= {p ∈ spec(Ai) : f /∈ p} = D(fi) ⊆ spec(Ai) ⊆ X.

Thus Xf =
⋃
i(Ui ∩ Xf ) =

⋃
iD(fi) which is a union of open sets and

therefore open.

(b) This is obvious from the calculation in (a)

(c) Let X = spec(C[x, y]) and U = X\{m} where m = (x, y) ⊆ C(x, y).
Since m is a maximal ideal in C[x, y], it is a closed point of X, and
therefore U is open. Recall that

OX(U) = {f(x, y)/g(x, y) : f, g ∈ C[x, y], D(g) ⊆ U}.

However, if D(g) ⊆ U then V (g) ⊆ {m} so the set {(a, b) ∈ C2 : g(a, b) =
0} consists of only the point (0, 0). This implies that g is constant and
therefore OX(U) = C[x, y].
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If U is affine, ie. U = spec(A), then A must be OX(U) and by the
previous problem the inclusion U → X corresponds to a ring homomor-
phism C[x, y] → OX(U). However, A = spec(C[x, y]) and the ring ho-
momorphsim C[x, y]→ OX(U) is the identity. This means that U → X
is an isomorphism of schemes, which is obviously false since it’s not even
a bijection as sets. Hence U is a scheme which is not affine.

(d) This is easy. If Y = spec(A), then the identity 1 ∈ A = OY (Y ) is a
global section of Y and Y1 = Y is affine and 1 generates the unit ideal
in A. The setup here was to make the bonus make sense, ie. so that the
converse statement also holds.

BONUS: Suppose that Y is a scheme and that there exist global sections
s1, . . . , sr of Y with Ysi affine for all i and with s1, . . . , sr generating the
unit ideal in OY (Y ). For each i, let Ai = OY (Yi) and let A = OY (Y ) and
let sij ∈ Aj be the image of si under the restriction map to Ysj . By the
same calculation as in (a), we know that Ysi ∩ Ysj = Ysisj is affine and
isomorphic to spec(Aij), where Aij = (Ai)sji = (Aj)sij . Then we have an
exact sequence of morphisms of schemes

0→ Y → qiYsi → qi 6=jYsisj .

In terms of rings, we have an exact sequence of rings

0→ A→
∏
i

Ai
(ai)7→(ai−aj)−−−−−−−−→

∏
i 6=j

Aij.

However, this leads to a commutative diagram

0 // 0 // Y //

��

qiYsi // qi 6=jYsisj

0 // 0 // spec(A) // qispec(Ai) // qi 6=jspec(Aij)

where each of the rows is exact. By the five lemma, it follows that Y is
isomorphic to spec(A) and in particular is affine.
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