Algebraic Geometry Fall 2018 Homework 4

W.R. Casper

Due Wednesday October 3 (start of class)

Problem 1. Let k be an algebraically closed field. Recall that a projective variety is an irreducible, closed subset of $\mathbb{P}(V)$ for some k-vector space V, where $\mathbb{P}(V) = \{[\vec{v}] : \vec{v} \in V\}$. The expression $[\vec{v}]$ denotes the equivalence class of \vec{v} , where two vectors are equivalent if and only if they are linearly dependent.

The grassmannian $G(m, n)$ is the collection of all m dimensional subspaces of k^n . It has the structure of a projective variety, via the Plücker embedding

$$
G(m, n) \mapsto \mathbb{P}(\wedge^m k^n), \text{ span}\{\vec{v}_1, \dots, \vec{v}_m\} \mapsto [\vec{v}_1 \wedge \dots \wedge \vec{v}_m] \in \mathbb{P}(\wedge^m k^n).
$$

This map is well-defined and injective, so it identifies $G(m, n)$ with a certain subset of $\mathbb{P}(\wedge^m k^n)$. To prove that $G(m, n)$ is a projective variety, one shows that this image under the Plücker embedding is the zero set of a homogeneous prime ideal in the symmetric algebra $S(\wedge^m k^m)$ (or if we choose a specific basis, a polynomial ring of appropriate size).

- (a) Show that the Plücker embedding is well-defined and injective.
- (b) Let $\alpha \in \wedge^m k^n$. Show that $[\alpha]$ lies in the image of the Plücker embedding if and only if the kernel of the map $k^n \mapsto \wedge^{m+1} k^n : \vec{v} \mapsto \vec{v} \wedge \alpha$ has dimension m.
- (c) Consider the first interesting case $G(2,4)$. The dimension of $\wedge^2(k^4)$ is 6, with basis $\{\vec{e}_i \wedge \vec{e}_j : i < j\}$ by which we may identify it with k^6 . Algebraic subsets of $\mathbb{P}(\wedge^2(\mathbb{k}^4))$ may then be identified with zero sets of collections of homogeneous polynomials in $S = k[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}]$. Show that the image of $G(2,4)$ under the Plücker embedding is the zero set of a single irreducible, homogeneous polynomial of degree 2, and therefore in particular is a projective variety. This polynomial is called the Plücker relation for $G(2, 4)$. What is the dimension of $G(2, 4)$ as a variety? [Hint: try using the characterization of the image from (b)]
- (d) (Challenging problem, not required) Can you figure out the Plücker relations in general? Can you think of a reason why the image of the Plücker embedding might be irreducible in general?

Problem 2. Let A be a graded k-algebra with A_0 reduced.

- (a) Show the ring of global sections of the structure sheaf of $Proj(A)$ contains A_0
- (b) If A is an integral domain, prove $\text{Proj}(A)$ is reduced and irreducible.
- (c) Let B be another graded k-algebra and $\varphi: A \to B$ be a graded k-algebra homomorphism. Show that

$$
V := \{ \mathfrak{p} \in \operatorname{Proj}(B) : \varphi(A_+) \nsubseteq \mathfrak{p} \}
$$

is an open subset of $\text{Proj}(B)$ and that φ induces a morphism of schemes $V \to \text{Proj}(A)$.

(d) Show by example that in general a graded k -algebra homomorphism $\varphi: A \to B$ may not induce a morphism of schemes $\text{Proj}(B) \to \text{Proj}(A)$, ie. that the homomorphism $V \to \text{Proj}(A)$ from (c) may not extend.

Problem 3. Let A be a graded k-algebra, $X = \text{Proj}(A)$, and M a graded A-module.

- (a) Show that there exists a unique \mathcal{O}_X -module \widetilde{M} on X satisfying $\widetilde{M}(D(f)) =$ $(M_f)_0$ for all homogeneous $f \in A_+$, where here $(M_f)_0$ is the degree 0 component of the graded module M_f .
- (b) For any integer ℓ , define a graded A-module tail $_{\ell}(M) := \bigoplus_{n > \ell} M_n$. Show that $M \cong \text{tail}_{\ell}(M)$ for all ℓ . Remark: This means that passing from graded A-modules to \mathcal{O}_X -modules

only remembers the tails of modules. In fact $M \mapsto M$ defines an equivalence of categories between the category of tails of graded A-modules and the category of \mathcal{O}_X -modules.

Problem 4. Let A be a graded k-algebra, $X = Proj(A)$, and M a graded A-module. The ℓ 'th Serre twist of M is the module $M(\ell) = M(\ell)$, where $M(\ell)$ is the graded A module whose n'th homogeneous component is $M_{\ell+n}$ for all $n \geq 0$. In the special case $M = A$, we write $\mathcal{O}_X(\ell)$ in place of $A(\ell)$. Show that for any ℓ the stalks $\mathcal{O}_X(\ell)_x$ at any $x \in X$ is free of rank 1 (ie. that $\mathcal{O}_X(\ell)$ is locally free of rank 1).

Remark: The collection of (isomorphism classes of) all locally free, rank 1 projective \mathcal{O}_X -modules forms an important object of study called the Picard group of X .