
Algebraic Geometry Fall 2018 Homework 4

W.R. Casper

Due Wednesday October 3 (start of class)

Problem 1. Let k be an algebraically closed field. Recall that a projective
variety is an irreducible, closed subset of P(V ) for some k-vector space V ,
where P(V ) = {[~v] : ~v ∈ V }. The expression [~v] denotes the equivalence
class of ~v, where two vectors are equivalent if and only if they are linearly
dependent.

The grassmannian G(m,n) is the collection of all m dimensional sub-
spaces of kn. It has the structure of a projective variety, via the Plücker
embedding

G(m,n) 7→ P(∧mkn), span{~v1, . . . , ~vm} 7→ [~v1 ∧ · · · ∧ ~vm] ∈ P(∧mkn).

This map is well-defined and injective, so it identifies G(m,n) with a certain
subset of P(∧mkn). To prove that G(m,n) is a projective variety, one shows
that this image under the Plücker embedding is the zero set of a homogeneous
prime ideal in the symmetric algebra S(∧mkm) (or if we choose a specific
basis, a polynomial ring of appropriate size).

(a) Show that the Plücker embedding is well-defined and injective.

(b) Let α ∈ ∧mkn. Show that [α] lies in the image of the Plücker embedding
if and only if the kernel of the map kn 7→ ∧m+1kn : ~v 7→ ~v ∧ α has
dimension m.

(c) Consider the first interesting case G(2, 4). The dimension of ∧2(k4) is 6,
with basis {~ei∧~ej : i < j} by which we may identify it with k6. Algebraic
subsets of P(∧2(k4)) may then be identified with zero sets of collections
of homogeneous polynomials in S = k[x12, x13, x14, x23, x24, x34]. Show
that the image of G(2, 4) under the Plücker embedding is the zero set of
a single irreducible, homogeneous polynomial of degree 2, and therefore
in particular is a projective variety. This polynomial is called the Plücker
relation for G(2, 4). What is the dimension of G(2, 4) as a variety? [Hint:
try using the characterization of the image from (b)]

(d) (Challenging problem, not required) Can you figure out the Plücker rela-
tions in general? Can you think of a reason why the image of the Plücker
embedding might be irreducible in general?

Problem 2. Let A be a graded k-algebra with A0 reduced.
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(a) Show the ring of global sections of the structure sheaf of Proj(A) contains
A0

(b) If A is an integral domain, prove Proj(A) is reduced and irreducible.

(c) Let B be another graded k-algebra and ϕ : A→ B be a graded k-algebra
homomorphism. Show that

V := {p ∈ Proj(B) : ϕ(A+) * p}

is an open subset of Proj(B) and that ϕ induces a morphism of schemes
V → Proj(A).

(d) Show by example that in general a graded k-algebra homomorphism
ϕ : A→ B may not induce a morphism of schemes Proj(B)→ Proj(A),
ie. that the homomorphism V → Proj(A) from (c) may not extend.

Problem 3. Let A be a graded k-algebra, X = Proj(A), and M a graded
A-module.

(a) Show that there exists a uniqueOX-module M̃ onX satisfying M̃(D(f)) =
(Mf )0 for all homogeneous f ∈ A+, where here (Mf )0 is the degree 0
component of the graded module Mf .

(b) For any integer `, define a graded A-module tail`(M) :=
⊕

n>`Mn. Show

that M̃ ∼= ˜tail`(M) for all `.
Remark: This means that passing from gradedA-modules toOX-modules
only remembers the tails of modules. In fact M 7→ M̃ defines an equiv-
alence of categories between the category of tails of graded A-modules
and the category of OX-modules.

Problem 4. Let A be a graded k-algebra, X = Proj(A), and M a graded

A-module. The `’th Serre twist of M̃ is the module M̃(`) = M̃(`), where
M(`) is the graded A module whose n’th homogeneous component is M`+n

for all n ≥ 0. In the special case M = A, we write OX(`) in place of Ã(`).
Show that for any ` the stalks OX(`)x at any x ∈ X is free of rank 1 (ie.
that OX(`) is locally free of rank 1).
Remark: The collection of (isomorphism classes of) all locally free, rank 1
projective OX-modules forms an important object of study called the Picard
group of X.
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