Algebraic Geometry Fall 2018 Homework 4

W.R. Casper

Due Wednesday October 3 (start of class)

Problem 1. Let k£ be an algebraically closed field. Recall that a projective
variety is an irreducible, closed subset of P(V') for some k-vector space V,
where P(V) = {[¢] : ¥ € V}. The expression [0] denotes the equivalence
class of U, where two vectors are equivalent if and only if they are linearly
dependent.

The grassmannian G(m,n) is the collection of all m dimensional sub-
spaces of k™. It has the structure of a projective variety, via the Pliicker
embedding

G(m,n) — P(ATE™), span{ty,...,Un} — [Uh A -+ Aty,] € P(ATE™).

This map is well-defined and injective, so it identifies G(m,n) with a certain
subset of P(A™k™). To prove that G(m,n) is a projective variety, one shows
that this image under the Pliicker embedding is the zero set of a homogeneous
prime ideal in the symmetric algebra S(A™k™) (or if we choose a specific
basis, a polynomial ring of appropriate size).

(a) Show that the Pliicker embedding is well-defined and injective.

(b) Let a € A™k™. Show that [ lies in the image of the Pliicker embedding
if and only if the kernel of the map k" — A™™E" : ¥ — ¥ A a has
dimension m.

(c) Consider the first interesting case G(2,4). The dimension of A%(k?) is 6,
with basis {€;A€; : i < j} by which we may identify it with k%, Algebraic
subsets of P(A?(k*)) may then be identified with zero sets of collections
of homogeneous polynomials in S = k[xis, 213, T14, T23, T24, T34]. Show
that the image of G(2,4) under the Pliicker embedding is the zero set of
a single irreducible, homogeneous polynomial of degree 2, and therefore
in particular is a projective variety. This polynomial is called the Pliicker
relation for G(2,4). What is the dimension of G(2,4) as a variety? [Hint:
try using the characterization of the image from (b)]

(d) (Challenging problem, not required) Can you figure out the Pliicker rela-
tions in general? Can you think of a reason why the image of the Pliicker
embedding might be irreducible in general?

Problem 2. Let A be a graded k-algebra with Ag reduced.



(a) Show the ring of global sections of the structure sheaf of Proj(A) contains
Ao

(b) If A is an integral domain, prove Proj(A) is reduced and irreducible.

(c¢) Let B be another graded k-algebra and ¢ : A — B be a graded k-algebra
homomorphism. Show that

V= {p € Proj(B) : p(A;) € p}

is an open subset of Proj(B) and that ¢ induces a morphism of schemes

V — Proj(A).

(d) Show by example that in general a graded k-algebra homomorphism
¢ : A — B may not induce a morphism of schemes Proj(B) — Proj(A),
ie. that the homomorphism V' — Proj(A) from (c¢) may not extend.

Problem 3. Let A be a graded k-algebra, X = Proj(A), and M a graded
A-module.

(a) Show that there exists a unique O x-module M on X satisfying M (D(f)) =
(My)o for all homogeneous f € A, where here (My)o is the degree 0
component of the graded module M.

(b) For any integer ¢, define a graded A-module tail,(M) := &,,., M,. Show

——~—

that M = tail, (M) for all .

Remark: This means that passing from graded A-modules to O y-modules
only remembers the tails of modules. In fact M +— M defines an equiv-
alence of categories between the category of tails of graded A-modules
and the category of Ox-modules.

Problem 4. Let A be a graded k-algebra, X = Proj(A), and M a graded

A-module. The £’'th Serre twist of M is the module M(ﬁ) = M({), where
M(?) is the graded A module whose n’th homogeneous component is My,

for all n > 0. In the special case M = A, we write Ox(¢) in place of A(¥).
Show that for any ¢ the stalks Ox({), at any x € X is free of rank 1 (ie.
that Ox(¢) is locally free of rank 1).

Remark: The collection of (isomorphism classes of) all locally free, rank 1
projective Ox-modules forms an important object of study called the Picard
group of X.



