
Algebraic Geometry Fall 2018 Homework 4

W.R. Casper

Due Wednesday October 3 (start of class)

Problem 1. Let k be an algebraically closed field. Recall that a projective
variety is an irreducible, closed subset of P(V ) for some k-vector space V ,
where P(V ) = {[~v] : ~v ∈ V }. The expression [~v] denotes the equivalence
class of ~v, where two vectors are equivalent if and only if they are linearly
dependent.

The grassmannian G(m,n) is the collection of all m dimensional sub-
spaces of kn. It has the structure of a projective variety, via the Plücker
embedding

G(m,n) 7→ P(∧mkn), span{~v1, . . . , ~vm} 7→ [~v1 ∧ · · · ∧ ~vm] ∈ P(∧mkn).

This map is well-defined and injective, so it identifies G(m,n) with a certain
subset of P(∧mkn). To prove that G(m,n) is a projective variety, one shows
that this image under the Plücker embedding is the zero set of a homogeneous
prime ideal in the symmetric algebra S(∧mkm) (or if we choose a specific
basis, a polynomial ring of appropriate size).

(a) Show that the Plücker embedding is well-defined and injective.

(b) Let α ∈ ∧mkn. Show that [α] lies in the image of the Plücker embedding
if and only if the kernel of the map kn 7→ ∧m+1kn : ~v 7→ ~v ∧ α has
dimension m.

(c) Consider the first interesting case G(2, 4). The dimension of ∧2(k4) is 6,
with basis {~ei∧~ej : i < j} by which we may identify it with k6. Algebraic
subsets of P(∧2(k4)) may then be identified with zero sets of collections
of homogeneous polynomials in S = k[x12, x13, x14, x23, x24, x34]. Show
that the image of G(2, 4) under the Plücker embedding is the zero set of
a single irreducible, homogeneous polynomial of degree 2, and therefore
in particular is a projective variety. This polynomial is called the Plücker
relation for G(2, 4). What is the dimension of G(2, 4) as a variety? [Hint:
try using the characterization of the image from (b)]

(d) (Challenging problem, not required) Can you figure out the Plücker rela-
tions in general? Can you think of a reason why the image of the Plücker
embedding might be irreducible in general?

Solution 1.
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(a) If V ∈ G(m,n) and ~u1, . . . , ~um and ~v1, . . . , ~vm are two bases for V , then
there exists a linear isomorphism T : V → V with T~ui = ~vi for all i.
Direct calculation shows

~u1 ∧ · · · ∧ ~um =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Tσ(i),i~v1 ∧ · · · ∧ ~vm = det(T )~v1 ∧ · · · ∧ ~vm,

and therefore [~u1∧· · ·∧~um] = [~v1∧· · ·∧~vm]. Furthermore, if we complete
~v1, . . . , ~vm to a basis ~v1, . . . , ~vn of kn and let T be the matrix whose
columns are the ~vj’s, then by the same calculation as before

(~v1 ∧ · · · ∧ ~vm) ∧ (~vm+1 ∧ · · · ∧ ~vn) = det(T )~e1 ∧ · · · ∧ ~en,
which is not zero. Therefore ~v1 ∧ · · · ∧ ~vm is not zero and this shows
that the Plücker embedding is well-defined. Now if W ∈ G(m,n) with
basis ~w1, . . . , ~wm and [~w1 ∧ · · · ∧ ~wm] = [~v1 ∧ · · · ∧ ~vm] then there exists
0 6= c ∈ k such that c(~w1∧ · · ·∧ . . . ~wm = ~v1∧ · · ·∧~vm. It follows that for
all i that ~wi ∧ ~v1 ∧ · · · ∧ ~vm = 0 and therefore ~wi, ~v1, . . . , ~vm are linearly
independent for all i. Consequently ~wi ∈ V for all i, so that W ⊆ V and
since W and V have the same dimension this means W = V . Thus the
Plücker embedding is injective.

(b) Let V ∈ G(m,n) and let ~v1, . . . , ~vm be a basis for V , which we complete
to a basis ~v1, . . . , ~vn for kn. Set α = ~v1∧· · ·∧~vm. Then by the calculation
in (a), we know that ~v1 ∧ · · · ∧~vn is nonzero and therefore ~vj ∧α 6= 0 for
j = m+ 1, . . . , n. Therefore the nullity of ~v 7→ ~v ∧α is at most m. Since
the kernel contains the linearly independent vectors ~v1 ∧ · · · ∧ ~vm, the
nullity is exactly m. Thus if α is in the image of the Plücker embedding
then ~v 7→ ~v ∧ α has dimension m.

To prove the converse, we require the following result: a collection of
linearly independent vectors ~u1, . . . , ~u` belongs to the kernel of ~v 7→ ~v ∧
α = 0 if and only if α = β∧γ for some γ ∈ ∧m−`kn, with β = ~u1∧· · ·∧~u`.
To see this, expand ~u1, . . . , ~u` to a a basis ~u1, . . . , ~un of kn andconsider
the expansion of α in terms of the canonical basis of ∧mkn induced by
this basis:

α =
∑

i1<i2<···<im

ci1,i2,...,im~ui1 ∧ · · · ∧ ~uim .

Then since ~v1 ∧ α = 0, we have

0 =
∑

1<i1<i2<···<im

ci1,i2,...,im~v1 ∧ · · · ∧ ~v` ∧ ~vi1 ∧ · · · ∧ ~vim .
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The entries ~v1 ∧ ~vi1 ∧ · · · ∧im are linearly independent for all ` < i1 <
· · · < im so this implies the associated coefficients are zero. Hence

α = ~u1 ∧
∑

1<i2<···<im

c1,i2,...,im~vi2 ∧ · · · ∧ ~vim .

Next, wedging with ~u2 we see that c1,i2,...,im = 0 for i2 6= 2. Continuing
in this way, we find

α = ~u1 ∧ · · · ∧ ~u` ∧
∑

`<i`+1<···<im

~v1,...,`,i`+1,...,im~vi`+1
∧ · · · ∧ im.

This proves our claim.

Now if α ∈ ∧mkn has an m dimensional kernel with basis ~u1, . . . , ~um, then
the result of the previous paragraph tells us that α = ~u1 ∧ · · · ∧um ∧ γ ∈
∧0kn = k. Thus [α] = [~u1 ∧ · · · ∧ ~um] is in the image of the Plücker
embedding. This proves proves the converse.

(c) We identify

[x12 : x13 : x14 : x23 : x24 : x34]↔ [α(xij)] :=

[∑
i<j

xij~ei ∧ ~ej

]
∈ P(∧2k4).

Then the linear map ~v 7→ ~v ∧ α(xij) associated to the point with coordi-
nates xij is

A(xij) :=


x23 −x13 x12 0
x24 −x14 0 x12
x34 0 −x14 x13
0 x34 −x24 x23

 ,

expressed in terms of the standard basis ~eijk of ∧3k4 with the usual
lexicographical order. The determinant of this matrix is given by

det(A(xij)) = (x12x34 − x13x24 + x14x23)
2.

and its cofactor matrix is given by

cof(A(xij)) = det(A(xij))A(xij)
−1

=


x14 −x13 x12 0
x24 −x23 0 x12
x34 0 −x23 x13
0 x34 −x24 x14

 (x12x34 − x13x24 + x14x23).
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From this we see rank of A(xij) is either 0, 2, or 4, and the rank is 2
precisely when at least one of the xij’s is nonzero and the determinant
vanishes. Thus the image of the Plücker embedding is exactly the pro-
jective variety

V (x12x34 − x13x24 + x14x23) ⊆ P(∧2k4).

Problem 2. Let A be a graded k-algebra with A0 reduced.

(a) Show the ring of global sections of the structure sheaf of Proj(A) contains
A0

(b) If A is an integral domain, prove Proj(A) is reduced and irreducible.

(c) Let B be another graded k-algebra and ϕ : A→ B be a graded k-algebra
homomorphism. Show that

V := {p ∈ Proj(B) : ϕ(A+) * p}

is an open subset of Proj(B) and that ϕ induces a morphism of schemes
V → Proj(A).

(d) Show by example that in general a graded k-algebra homomorphism
ϕ : A→ B may not induce a morphism of schemes Proj(B)→ Proj(A),
ie. that the homomorphism V → Proj(A) from (c) may not extend.

Solution 2.

(a) Let X = Proj(A). Then X is covered by a collection of distinguished
opens {D(fi)} corresponding to homogeneous elements fi ∈ A+. The
global sections of X are precisely the kernel of the equalizer diagram

OX(X) = ker

(∏
i

OX(D(fi))→
∏
ij

OX(D(fifj))

)
.

By definition, this is precisely

OX(X) = ker

(∏
i

(Afi)0 →
∏
ij

(Afifj)0

)
.
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For a ∈ A0 the section (si) ∈
∏

i(Afi)0 with si = a for all i lies in the
kernel of the above, and therefore corresponds to an elment of OX(X).
Thus we have a map A0 → OX(X) defined by sending a 7→ (si) with
si = a for all i. Since A is reduced, a cannot be nilpotent and the above
map is injective.

(b) The fact that V is open follows from the definition of the topology of the
Proj construction, since V = Proj(B)\V (ϕ(A+)). To define the induced
map, it suffices to define it on affine opens and show things glue.

For a ∈ A+ homogeneous and b = ϕ(a) note that D(b) ⊆ V because p ∈
D(b) implies ϕ(a) /∈ p and therefore ϕ(A+) * D(g). Moreover, we have
canonical isomorphisms D(b) ∼= spec((Bb)0) and D(a) ∼= spec((A0)0) in-
duced by the identity on global sections. For each a ∈ A+ homogeneous
we define fa : D(b) → D(a) to be the morphism of affine schemes cor-
responding to the localized map (Aa)0 → (Bb)0. For a, ã ∈ A+ with

b = ϕ(a), b̃ = ϕ(b) we have a commutative diagram

D(̃b) // D(ã)

D(b̃b)

⊆
<<

⊆ ##

// D(aã)

⊆
;;

⊆ ##
D(b) // D(a)

This gives us a commutative diagram of morphisms of schemes

0 // V //

��

qa∈A+,homog.D(ϕ(a)) ////

��

qa,ã∈A+, 6=,homog.D(ϕ(aa+)) //

��

0

0 // Proj(A) // qa∈A+,homog.D(a) //// qa,ã∈A+,6=,homog.D(aa+) // 0

where the rows are exact and come from the proj construction. The
existence of the dashed arrow follows immediately from exactness of the
rows and an obvious “diagram chase”.

(c) Let A = C[x, y] and B = C[x, y, z] with the usual gradings. The inclusion
A → B of graded rings does not produce a map P2

C → P1
C, because all
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such maps are constant! Indeed ϕ(A+) is contained in the homogeneous
prime ideal (x, y) which is in Proj(B) and

V = {p ∈ Proj(B) : ϕ(A+) * p} = P2
C\{[0 : 0 : 1]}.

and the induced map V → P1
C is just projection onto the first two co-

ordinates [a : b : c] 7→ [a : b], which is undefined at the removed point
[0 : 0 : 1] of P2

C.

Problem 3. Let A be a graded k-algebra, X = Proj(A), and M a graded
A-module.

(a) Show that there exists a uniqueOX-module M̃ onX satisfying M̃(D(f)) =
(Mf )0 for all homogeneous f ∈ A+, where here (Mf )0 is the degree 0
component of the graded module Mf .

(b) For any integer `, define a graded A-module tail`(M) :=
⊕

n>`Mn. Show

that M̃ ∼= ˜tail`(M) for all `.
Remark: This means that passing from gradedA-modules toOX-modules
only remembers the tails of modules. In fact M 7→ M̃ defines an equiv-
alence of categories between the category of tails of graded A-modules
and the category of OX-modules.

Solution 3.

(a) For each homogeneous a ∈ A+ let ιa : D(a) → X be the inclusion map.
Recall that D(a) ∼= spec((Aa)0) so that the (Aa)0-module (Ma)0 gives rise
to a sheaf Fa on D(a) satisfying Fa(D(f)) = ((Ma)0)f for all f ∈ (Aa)0.
Furthermore for any homogeneous b ∈ A+ we know that the natural
restriction map D(ab)→ D(a) ∩D(b) is an isomorphism (even if a = b)
and this restriction induces an isomorphism of sheaves Fa|D(a)∩D(b)

∼= Fab
because the localizations of M are the same.

Let S be the set of all homogeneous elements of A+ and as an abuse of
notation write s|V for resU,V (s) for V ⊆ U ⊆ X and s a section over U
of a sheaf. Consider the morphism of OX-modules on X∏

a∈S

ιa∗(Fa)→
∏
a,ã∈S

ιaã∗(Faã).
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defined for each U ⊆ X by restriction:∏
a∈S

Fa(U ∩D(a))→
∏
a,ã∈S

Faã(U ∩D(aã))

(sa)a∈S 7→ ((sa)|U∩D(aã) − (sã)|U∩D(aã))a,ã∈S

Let M̃ denote the kernel of is morphism. Since kernels of morphisms of
sheaves are automotically sheaves, we know M̃ is a sheaf. Moreover, since
the above is an OX-module homomorphism we know M̃ is a OX-module.

For any homogeneous b ∈ A+ we have

ιa∗Fa(D(b)) = Fa(D(b) ∩D(a)) = Mab = Fb(D(b) ∩D(a))

so that we have an exact sequence

0→M(D(b))→
∏
a∈S

Fb(D(b) ∩D(a))→
∏
a,ã∈S

Fb(D(b) ∩D(a) ∩D(ã))

where the arrows are defined by restriction. Since Fb is a sheaf on D(b)
and {D(a) ∩ D(b) : a ∈ S} is a cover of D(b), the gluing property
automatically tells us M(D(b)) = Fb(D(b)) = (Mb)0.

(b) Fix ` ≥ 0 and set N = tail`(M) and consider the short exact sequence
of graded A-modules

0→ N
⊆−→M → T → 0

where T = M/N . Note that the degree d’th component Td of T is zero
for d � 0 and therefore if t ∈ T and a ∈ A+ is homogeneous then
t/an = adt/an+d = 0 so that the localization Ta is zero for all a.

The map from modules to sheaves is a functor and therefore sends the
sequence to a sequence of modules

0→ Ñ → M̃ → T̃ → 0

which is also exact (as may be checked on stalks). Furthermore for every

homogeneous a ∈ A+ we have T̃ (D(a)) = (Ta)0 by (a) and since Ta = 0

for all a, it follows that T̃ is locally zero. By uniqueness of the gluing
property of sheaves, it follows that T̃ = 0 and therefore Ñ and M̃ are
isomorphic as sheaves.
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Problem 4. Let A be a graded k-algebra, X = Proj(A), and M a graded

A-module. The `’th Serre twist of M̃ is the module M̃(`) = M̃(`), where
M(`) is the graded A module whose n’th homogeneous component is M`+n

for all n ≥ 0. In the special case M = A, we write OX(`) in place of Ã(`).
Show that for any ` the stalks OX(`)x at any x ∈ X is free of rank 1 (ie.
that OX(`) is locally free of rank 1).
Remark: The collection of (isomorphism classes of) all locally free, rank 1
projective OX-modules forms an important object of study called the Picard
group of X.

Solution 4. For this question, we require an additional constraint in order for
the statement to be true, avoiding certain silly situations where the grading
has no control over the ring. Specifically we will assume that A is generated
as an A0-algebra by A1. Note that many situations may be reduced to this
case by taking a Veronese subring which doesn’t change the value of Proj(A),
but which constrains our Serre shifts to be certain multiples of an integer.

Fix ` ∈ Z. For any nonzero f ∈ A1, the map (A(`)f )0 → (Af )0 defined
by multiplication by f−` is an (Af )0-module homomorphism and therefore

Ã(`)|D(f) is isomorphic to OD(f) as OD(f)-modules. In particular for any
x ∈ D(f), the stalk A(`)x is free of rank 1. Since the elements of degree 1
generate A, the set {D(f) : 0 6= f ∈ A1} is a cover of X, so this proves the
statement for all x ∈ X.
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