Algebraic Geometry Fall 2018 Homework 6

W.R. Casper

Due Wednesday October 24 (start of class)

Problem 1. Show that $\mathbb{P}_k^1 \times \mathbb{P}_k^1$ is not isomorphic to \mathbb{P}_k^2 as a scheme. [Hint: there are many ways to see this. One way is to show that $\mathbb{P}_k^1 \times \mathbb{P}_k^1$ has a non-constant map to \mathbb{P}_k^1 , whereas every map from \mathbb{P}_k^2 to \mathbb{P}_k^1 is constant. Can you think of more reasons?]

Problem 2. A morphism $f : X \to Y$ is called **projective** if it factors as $X \xrightarrow{i} \mathbb{P}^n_Y \to Y$ with *i* a closed embedding, where $\mathbb{P}^n_Y := \mathbb{P}^n_Z \times_{\mathbb{Z}} Y$ and $\mathbb{P}^n_Y \to Y$ is the canonical morphism. We also say X is projective over Y.

- (a) Prove that projective morphisms are stable under base change. [Hint: $X \times_{\mathbb{P}^n_{\mathcal{T}}} \mathbb{P}^n_Y \cong X \times_Z Y$]
- (b) Prove that a composition of projective morphisms is projective. [Hint: $\mathbb{P}_{\mathbb{P}_Y^n}^m \cong \mathbb{P}_Y^m \times_Y \mathbb{P}_Y^n$ and embeds into $\mathbb{P}_Y^{(m+1)(n+1)-1}$ via the Segre embedding]

Problem 3. Let $h: X \to Y$ be a morphism of schemes over Z (meaning that there are morphisms $f: X \to Z$, and $g: Y \to Z$ and the obvious triangle is a commutative diagram). The **graph morphims of** h is the morphism $\Gamma_h: X \to X \times_Z Y$ induced by the universal property of fibered products. An important special case is the **diagonal morphism** $\Delta_{X/Z} := \Gamma_{id} : X \to$ $X \times_Z X$ and X is called **separated over** Z (or equiv. f is called a separated) if $\Delta_{X/Z}$ is a closed embedding.

- (a) Show that if Y is separated over Z then Γ_h is a closed embedding. [Hint: closed embeddings are preserved under base change]
- (b) The morphism $f: X \to Z$ is called **closed** if it maps closed sets to closed sets and **universally closed** if every base change of f is closed. Show that if f is universally closed and g is separated then h is closed. [Hint: factor h as $X \to X \times_Z Y \to Y$]