Group Schemes Homework 2

Due Monday, April 13

Problem 1. Prove that if $F : \underline{k-Algs} - \underline{Sets}$ is representable, then F satisfies the following properties:

S1 (uniqueness) for every k-algebra R and every finite family of k-algebras $\{R_i\}$ with $R \to \prod_i R_i$ faithfully flat

$$F(R) \to \prod_i F(R_i)$$
 is injective

S2 (gluing) for every k-algebra R and every finite family of k-algebras $\{R_i\}$ with $R \to \prod_i R_i$ faithfully flat,

if
$$(s_i) \in \prod_i F(R_i)$$
, and $s_i|_{R_i \to R_{ij}} = s_j|_{R_j \to R_{ij}} \forall i, j$

then $\exists s \in R_i$ with $s|_{R \to R_i} = s_i \ \forall i$.

Here $R_{ij} = R_i \otimes_R R_j$ and for $s \in F_A$ and $A \xrightarrow{\varphi} B$, $s|_{A \xrightarrow{\varphi} B} := F(\varphi)(s)$.

Note that this is precisely the definition of F being a sheaf in the flat topology. In particular, representable functors are sheaves in the flat topology.

Problem 2. Consider the subgroups SL_n and \mathbb{G}_m of GL_n . Then the functor F: k-Algs – <u>Sets</u> defined by

$$F(R) = \operatorname{SL}_n(R) \mathbb{G}_m(R) \subseteq \operatorname{GL}_n(R)$$

is group-valued, but is not an affine group scheme because it is not representable.

Hint: let R be a ring with an element $r \in R$ which does not have an n'th root of unity, and let $R' = R[r^{1/n}]$ so that $R \to R'$ is faithfully flat. If R is representable, the previous problem says

$$\operatorname{img}(F(R) \to F(R')) = \{ s \in F(R') : s |_{R' \xrightarrow{p_1} R' \otimes_R R'} = s |_{R' \xrightarrow{p_2} R' \otimes_R R'} \},$$

where here $p_i : R' \to R' \otimes_R R'$ is the map $r \mapsto r \otimes 1$ and $r \mapsto 1 \otimes r$, for i = 1, 2 respectively. Now show that this is *not* the case.

Problem 3. Let H and K be subgroups of an affine group G and let HK be the sheafification of the presheaf

$$R \mapsto H(R)K(R)$$

- (a) Show that HK is representable b \mathcal{O}_G/I where here I is the kernel of the homomorphism $\mathcal{O}_G \to \mathcal{O}_H \otimes_k \mathcal{O}_K$ defined by the obvious natural transformation $H \times K \to G$.
- (b) Show that

$$(HK)(R) = \bigcup_{R \to R'} G(R) \cap (H(R')K(R'))$$

where the intersection is taken over all faithfully flat extensions $R \to R'$.

Problem 4. Use the previous result to show that $SL_n \mathbb{G}_m = GL_n$.