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1 Day 1: Introduction and Category Theory

1.1 Introduction

Definition 1. A topological group G is a group which is a topological space with the
property that the multiplication and inversion maps

G×G→ G, (g, h) 7→ gh

G→ G, g 7→ g−1

are continuous.

Some obvious examples include finite groups with the discrete topology, or matrix
groups with the topologies inhereted from Euclidean space.

Just like with topology, we can study a collection of enriched topological spaces, ie.
some collection of topological spaces with additional structure (smooth, algebraic), and
we can consider topological groups wherein the given extra structure is respected by
the group operations. This leads, for example, to the notion of Lie groups: topological
groups with a smooth structure such that multiplication and inversion are smooth maps.
The same principle leads us to groups schemes: topological groups which have a scheme
structure, such that the multiplication and inversion maps are algebraic. Here, intuitively
algebraic means “defined by rational functions”.

Example 2. Let k be a field. The prototypical example of a group scheme is GLN (k),
the set of N × N invertible matrices with entries in k. The points of GLN (k) may be
identified with the (closed) points of an affine scheme

GLN (k)↔ Spec(C[x11, x12, . . . , xNN , t]/(t det(xij)− 1) ⊆ kN×N+1

by sending a matrix A with entries aij to the tuple (a11, a12, . . . , aNN ,det(A)−1). The
multiplication of matrices A and B with entries aij and bij satisfies

(AB)ik =
∑
j

aijbjk.
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Since it is defined by polynomials, it is algebraic. Likewise, Cramer’s rule allows us to
express the inverse of A as

A−1 = adj(A) det(A)−1,

where here adj(A) is the adjugate of A, whose entries are defined by polynomials in
terms of the determinants of cofactors. Consequently inversion is defined by rational
functions and is therefore also algebraic.

Example 3. A very different example of an algebraic group comes from algebraic ge-
ometry. Let g1, g2 be elements of a field k and consider the projective scheme

C = Proj(k[X,Y, Z]/(Y 2Z −X3 + g1XZ
2 + g2Z

3)).

The closed points of C correspond to equivalence classes [a : b : c] with a, b, c ∈ k3 (not
all zero) satisfying b2c − a3 + g1ac

2 + g2c
3, where [a : b : c] = [a′ : b′ : c′] if (a, b, c) and

(a′, b′, c′) are linearly dependent. Thus as a set, the closed points of C may be identified
with

{∞} ∪ {(a, b) ∈ k2 : b2 = a3 − g1a− g2}.

where here∞ is the “point at infinity”∞ = [0 : 1 : 0] and (a, b) corresponds to [a : b : 1].
As is well known, the curve C can be given an abelian group structure, where gener-

ically for any points p = [a : b : 1] and q = [a′ : b′ : 1], the value of −(p+ q) is the unique
point R on C such that p, q,R are all colinear in the affine plane.

This can also be expressed in terms of line bundles. The distinguished point ∞
induces a map from points of C to the collection of line bundles L on C, sending a point
p to the degree 0 line bundle L([p]− [∞]) with divisor class [p]− [∞]. This is called the
Abel-Jacobi map, which for an elliptic curve is a bijection with the set of line bundles.
The sum of points p and q is the unique point p+q satisfying the tensor product identity

L([p]− [∞])⊗ L([q]− [∞]) ∼= L([p+ q]− [∞]).

An elliptic curve gives an example of a projective group scheme, ie. a group
scheme where the underlying algebraic structure is a projective scheme (ie. has a closed
embedding into projective space).

At least initially, we will focus our attention on affine group schemes, which are
equivalent to commutative rings. Careful! This does not mean that the group operation
will be abelian! For example, GLN (k) above is not abelian, but is an affine group scheme.

Affine group schemes over a field k have three equivalent useful perspectives

• as representable functors k-Alg→ Groups

• as commutative Hopf algebras over k

• as groups in the category of schemes over k

We will explore each of these interpretations as we go along, starting with the very first.
To do so, we need to review some category theory and in particular what it means for a
functor to be representable.
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1.2 Category Theory Review

We begin with a review of three important basic definitions from category theory.

Definition 4. A category C consists of a class obj(C) of objects, a class hom(C) of
arrows (or morphisms, maps) such that associative composition and identities exist. As
usual, hom(A,B) denotes the class of arrows from A to B for all A,B ∈ obj(C).

We will restrict our attention to locally small categories, wherein hom(A,B) is a
set for all A,B ∈ obj(C). Natural examples of categories include the category Top of
topological spaces and the category Set of sets.

Definition 5. Let C and D be categories. A functor F : C → D is a mapping which
sends each object A ∈ obj(C) to an object F (A) ∈ obj(D) and each arrow f : A→ B to
a morphism F (f) : F (A)→ F (B) such that

F (idA) = idF (A) and F (g ◦ f) = F (g) ◦ F (f).

One example of a functor is F : Top→ Set which takes a topological space X to the
collection F (X) = {γ : S1 → X} of continuous maps of S1 into X, ie. loops in X. A
homomorphism f : X → Y is sent to the set map F (f) : F (X)→ F (Y ), γ 7→ f ◦ γ.

Definition 6. Let C and D be categories and F,G : C → D be functors. A natural
transformation T : F → G is a collection of arrows TA : F (A) → G(A) for all
A ∈ obj(C) such that for every morphism f : A→ B in C we have

TB ◦ F (f) = G(f) ◦ TA.

If TA is an isomorphism for all A, then T is called a natural isomorphism and F and
G are called isomorphic and we write F ∼= G.

2 Day 2: Representability

2.1 Yoneda’s Lemma

One of the key observations of modern algebraic geometry is the following

Observation 7. An object A in a category C is determined (up to isomorphism) by its
morphisms.

To begin, let’s explore this idea from a topological perspective. LetX be a topological
space. The collection C(X) of continuous maps X → R tells us a lot about X. In fact if
X and Y are compact topological spaces, the Urysohn’s Lemma implies that C(X) and
C(Y ) are isomorphic if and only if X and Y are homeomorphic. This can be viewed as
an intuitive starting point for algebraic geometry: we can study the geometry of X by
studying the structure of the algebra of continuous functions on X.

Inspired by the remarks of the previous paragraph, we ask how much information
do we need to know about maps out of X do we need in order to figure out what X is
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(up to homeomorphism)? In general, knowing all maps X → R is not enough (even in
the compact case, unless we remember the algebra structure also). What the previous
observation says is that if for any topological space Z, we know the set C(X,Z) of
continuous maps from X to Z, and we remember the natural maps C(X,Z)→ C(X,Z ′)
defined by homomorphisms Z → Z ′, then we can uniquely determine X.

To do things in an arbitrary category C, we adopt the notation. For A ∈ obj(C)
define the functor hA : C → Set by

hA = hom(A,−) :B 7→ hom(A,B), B ∈ obj(A)

f 7→ (g 7→ f ◦ g, g ∈ hom(A,B)), f ∈ hom(B,B′)

The functor hA remembers the morphisms from A to other objects in C, and what our
starting observation amounts to is hA ∼= hA

′
if and only if A ∼= A′. Furthermore, we

can show that for any functor F : C → Set there is a natural bijection between natural
transformations hA → F and objects in F (A). This is the statement of Yoneda’s Lemma.

Lemma 8 (Yoneda). Let C be a category and let F : A → Set. There is a set bijection

Nat(hA, F ) ∼= F (A), T 7→ TA(idA).

Moreover this bijection is natural in both A and F .

Proof. Fix an object A in C. For any a ∈ F (A), define a natural transformation Ta :
hA → F by

(Ta)B : hom(A,B)→ F (B), f 7→ F (f)(a).

Then for any natural transformation T : hA → F , the element a = TA(idA) ∈ F (A)
satisfies

(Ta)B(f) = F (f)(a) = F (f)(TA(idA)) = TB(hA(f)(idA)) = TB(f)

for all objects B in C and morphisms f ∈ hom(A,B).
Conversely, if a ∈ F (A) then (Ta)A(idA) = F (idA)(a) = idF (A)(a) = a. Thus a 7→ Ta

and T 7→ TA(idA) are inverse maps, showing that the map stated in the Lemma is a
bijection. We leave the verification of the naturality of this bijection to the interested
reader.

Problem 1 (Due with Homework 1). Use Yoneda’s Lemma to prove that hA and hB

are naturally isomorphic if and only if A and B are isomorphic.

2.2 Representability

Yoneda’s lemma motivates the following definition.

Definition 9. A functor F : C → Set is representable if there exists an object A ∈
obj(C) and a natural transformation T : hA ∼= F . In this case, we say that (A, T )
represents F .
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Without knowing any algebraic geometry, we can think of an affine scheme as a
representable functor from k-Algop to Set. In fact, the category of schemes is anti-
equivalent to the category of k-algebras. In order to avoid having to build the theory of
schemes, we will word directly with k-algebras and consider functors for k-Alg to Set.
We will also avoid arrows all over the place by defining affine schemes the following way:

Definition 10. An affine scheme is a representable functor k-Alg→ Set.

Note that this is anti-equivalent to the usual category of affine schemes!

Example 11. The affine line A1 is the functor

A1 : k-Alg→ Set, R 7→ R.

This functor is representable by A = k[x] since, we have a natural transformation

T : hA → A1, TR : hom(A,R)→ R, f 7→ f(x)

which is an isomorphism.

Problem 2 (Due with Homework 1). Show that there is no affine scheme F over k such
that G(R) has exactly two elements for all R.

3 Day 3: Affine Groups

In algebraic geometry, we learn that an affine scheme is controlled by its coordinate ring.
Translating this into our format, we have the following definition.

Definition 12. Let F : k-alg→ Set be an affine scheme. The coordinate ring of F is
the set Nat(F,A1).

Note that the coordinate ring of F has the structure of a k-algebra. The identity
corresponds to the natural transformation

1F : F → A1, (1F )R : F (R)→ R, a 7→ 1.

Proposition 13. Let F, F̃ be affine schemes and A = Nat(F,A1) and Ã = Nat(F̃ ,A1)
be the corresponding coordinate rings. Then F ∼= F̃ if and only if A ∼= Ã. In particular,
if F ∼= hB, then A and B are isomorphic.

Proof. Suppose that there exists an isomorphism T : F ∼= F̃ . Then the natural map

ϕ : A→ Ã : T ′ 7→ T ′ ◦ T

defines a k-algebra isomorphism.
Conversely, suppose that there exists a k-algebra isomorphism ϕ : A → Ã. Since F

and F̃ are representable, there exist natural transformations T : hB ∼= F and T̃ : hB̃ ∼= F̃
for some k-algebras B, B̃. These induce algebra isomorphisms

B
Yoneda︷︸︸︷

= Nat(hB,A1) ∼= A ∼= Ã ∼= Nat(hB̃,A1)
Yoneda︷︸︸︷

= B̃.

5



Since B and B̃ are isomorphic, it follows that hB and hB̃ are isomorphic, and so F and
F̃ are isomorphic.

Note in particular that the this shows for hB ∼= F , we have

A ∼= Nat(hB,A1)
Yoneda︷︸︸︷

= A1(B) = B

and thus A and B are isomorphic.

Corollary 14. Let F, F̃ be affine schemes and A = Nat(F,A1) and Ã = Nat(F̃ ,A1) be
the corresponding coordinate rings. Then

Nat(F, F̃ ) ∼= homk(Ã, A).

Proof. Since F ∼= hA and F̃ ∼= hÃ we hvae

Nat(F, F̃ ) ∼= Nat(hA, hÃ)
Yoneda︷︸︸︷

= hÃ(A) = homk(Ã, A).

3.1 Affine group

Now that we know what representability is, we can formally define an affine group over
k.

Definition 15. A affine group over k is a representable functor G : k-Alg→ Set along
with a natural transformation m : G×G→ G such that for all k-algebras R

mR : G(R)×G(R)→ G(R)

defines a group structure on G(R). A homomorphism of affine groups G → H is a
natural transformation which respects the group structure.

Example 16. The functor

GLN : k-Alg→ Set, R 7→ GLN (R)

is representable by the k-algebra

A = k[x11, x12, . . . , xNN , y]/(y det(xij)− 1).

To see this, note that there is a natural transformation

T : hA → GLN , TR : hom(A,R)→ GLN (R),

defined by sending φ ∈ hom(A,R) to (φ(xij)). The natural transformation

m : GLN ×GLN → GLN , mR : GLN (R)×GLN (R)→ GLN (R)

defined by matrix products gives GLN the structure of an affine group.
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Example 17. The functor

SLN : k-Alg→ Set, R 7→ SLN (R)

is a group scheme. In particular, it is representable by the k-algebra

A = k[x11, x12, . . . , xNN , y]/(det(xij)− 1).

Example 18. The functor

Ga : k-Alg→ Set, R 7→ R,

is representable by the k-algebra k[x]. Furthermore, it is a group scheme when we view
R as a group with its additive group structure.

3.2 Products of Affine Groups

Let G and H be affine groups, with natural transformations

mG : G×G→ G, mH : H ×H → H

defining group structures on G(R) and H(R) for all R. The product functor

G×H : R 7→ G(R)×H(R).

can also be given a group structure by considering the natural transformation

m = mG ×mH : (G×H)× (G×H)→ G×H.

Furthermore, it is representable, making it an affine group.

Proposition 19. Let F, F̃ be affine schemes. Then F × F̃ is also an affine scheme.

Proof. Let A and Ã be k-algebras with natural isomorphisms hA ∼= T and hÃ ∼= F̃ .
Then for all k-algebras R, we have natural transformations

F (R)× F̃ (R) ∼= homk(A,R)× homk(Ã, R) ∼= homk(A⊗k Ã, R).

Thus F × F̃ and hA⊗Ã are isomorphic.

4 Day 4: Hopf Algebras

4.1 Hopf Algebras

Definition 20. Let A be a k-algebra. A co-multiplication on an algebra A is a
k-algebra homomorphism ∆ : A→ A⊗k A.
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By Yoneda’s lemma, this is the same as defining a natural transformation

hA⊗kA = hA × hA → hA,

ie. a binary operation on hA(R) for all R. If this defines a group structure on hA(R),
then this makes hA an affine group.

Conversely, if G = hA is an affine group, then G × G = hA⊗kA and by Yoneda the
multiplication operation m : G × G → G corresponds to a co-multiplication ∆ : A →
A⊗k A.

To summarize: an affine group G is the same as a k-algebra A with a comultiplication
∆ which defines a group structure. We want to explore further what it means for ∆ to
define a group structure. Our idea is now to translate the properties of a group into
properties of the affine group scheme.

• The binary map defined by ∆ is

m : G(R)×G(R)→ G(R),

homk(A,R)⊕2 → homk(A,R), (f, g) 7→ ∇ ◦ (f ⊗ g) ◦∆.

where here ∇ is the algebra homomorphism A⊗k A→ A defined in simple tensors
by ∇(a⊗ b) = ab.

• The existence of an identity in G(R) for all R corresponds to a distinguished
collection of k-algebra homomorphisms

εR : A→ R, such that ∇ ◦ (εR ⊗ f) ◦∆ = ∇ ◦ (f ⊗ εR) ◦∆ = f.

Furthermore since m is a natural transformation, εR = eR ◦ εk for eR : k → R
the unique k-algebra homomorphism. Thus εR is completely determined by ε = εk
satisfying

(ε⊗ idA) ◦∆ = idA = (idA ⊗ ε) ◦∆.

• The existence of inverses corresponds to S : hA → hA such that

SR : homk(A,R)→ homk(A,R), ∇ ◦ (f ⊗ S(f)) ◦∆ = ∇ ◦ (S(f)⊗ f) ◦∆ = εR.

By Yoneda, this is the same thing as specifying an element of S ∈ hA(A) =
homA(A), which we call the antipode and which satisfies

∇ ◦ (f ⊗ f ◦ S) ◦∆ = ∇ ◦ (f ◦ S ⊗ f) ◦∆.

• Associativity implies that for all f, g, h ∈ homk(A,R)

∇ ◦ ((∇ ◦ (f ⊗ g) ◦∆)⊗ h) ◦∆ = ∇ ◦ (f ⊗ (∇ ◦ (g ⊗ h) ◦∆)) ◦∆,

In the specific case when R = A and f = g = h = idA, this says

∇ ◦ ((∇ ◦∆)⊗ idA) ◦∆ = ∇ ◦ (idA ⊗ (∇ ◦∆)) ◦∆,
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or equivalently

∇ ◦ (∇⊗ idA) ◦ (∆⊗ idA) ◦∆ = ∇ ◦ (idA ⊗∇) ◦ (idA ⊗∆) ◦∆.

Noting that this morphism is injective and ∇ ◦ (∇ ⊗ idA) = ∇ ◦ (idA ⊗ ∇), we
obtain

(∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆.

This is eqivalent to commutativity of

A⊗k A
idA⊗∆

''
A

∆
;;

∆ ##

A⊗k A⊗k A

A⊗k A

∆⊗idA

77

This motivates the definition of a coalgebra.

Definition 21. An algebra A consists of a tuple (A,∇, e), with A a k-mudle, and linear
maps ∇ : A⊗k A→ A and e : k → A satisfying

unit ∇ ◦ (e⊗ idA) = idA = ∇ ◦ (idA ⊗ ε) (1)

associativity ∇ ◦ (∇⊗ idA) = ∇ ◦ (idA ⊗∆). (2)

A homomorphism of algebras (A,∇, e) → (A′,∇′, e′)is a k-linear map A → A′ making
the obvious diagrams commute.

Definition 22. A coalgebra over k is a tuple (A,∆, ε) consisting of a k-module A and
k-linear maps ∆ : A→ A⊗k A and ε : A→ k satisfying

counit (ε⊗ idA) ◦∆ = idA = (idA ⊗ ε) ◦∆ (3)

coassociativity (∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆. (4)

A homomorphism of coalgebras (A,∆, ε)→ (A′,∆′, ε′)is a k-linear map A→ A′ making
the obvious diagrams commute.

Definition 23. A bialgebra over k is a quintuple (A, η, e,∆, ε) such that (A, η, e) is an
algebra and (A,∆, ε) is a coalgebra and ∆ and ε are both algebra homomorphisms. A
inversion map or antipode for a bialgebra is a k-linear map S : A→ A such that the
obvious things happen. A bialgebra with an antipode is called a Hopf algebra.
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5 Day 9: More Examples of Group Schemes

5.1 More examples of basic group schemes

Example 24. The group µn defined by

µ : k-Alg→ Set, µn(R) = {r ∈ R : rn = 1}

is a group scheme with the obvious multiplication. It is represented by the k-algebra
k[x]/(xn − 1).

Example 25. Let G0 be a finite group and consider the set A = {f : G0 → k} of set
maps from G0 to k. It has a natural k-algebra structure. The functor

G : k-Alg→ Set, G(R) = homk(A,R)

has a natural group structure and for R without nontrivial idempotents G(R) ∼= G0 This
group scheme is called the constant group scheme.

Problem 3. Fill in the details of the previous example.

5.2 More ways to build group schemes

We have already seen how given two affine group schemes G,H, we can form the product
affine group scheme G×H. We next discuss several other methods for creating new affine
group schemes from old ones.

5.2.1 Fibered products

Let ψ1 : G1 → H and ψ2 : G2 → H be morphisms of group schemes. Then we can form
the fibered product

G1 ×H G2(R) = G1(R)×H(R) G2(R) = {(g1, g2) ∈ G1(R)×G2(R)|ψ1(g1) = ψ2(g2)}.

This set has the structure of a group in an obvious way. It is represented as a scheme
by A1 ⊗B A2, where here Ai represents Gi and B represents H.

5.2.2 Limits of affine group schemes

Given a functor F : I → Aff. Grp, the limit (ie. inverse limit)

lim←−F : R 7→ lim←−F (R)

exists and has the structure of an affine group.

Example 26. Consider the chain of group homomorphisms

· · · → µp3 → µp2 → µp → 0.
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Then there is a unique group scheme G with morphisms ψn : G(R)→ µpn(G) satisfying

pψn+1(g) = ψn(pg).

It is represented by the ring of formal series

A =


∞∑
j=0

aj(x)xpj : deg(aj(x)) < p.

 .

5.2.3 Extension and restriction of scalars

If k′ is a k-algebra, we can extend a group scheme G over k to a group scheme Gk′ over
k′ by defining

Gk′ : R 7→ G(R),

where the above expression makes sense, since any k′ algebra is automatically a k-algebra.
The functor Gk′ is represented by the k′-algebra k′⊗k A, where A represents G. We call
Gk′ an extension of scalars of G.

Going the other way, we also have a functor called the (Weyl) restriction of
scalars which is obtained from a group scheme over k′. Given a group scheme G over
k′, we define

Gk′/k : k-Alg→ Set, Gk′/k(R) = G(k′ ⊗k R).

To show that this is a group scheme in certain situations, we require the following lemma

Proposition 27. Let k′ be a k-algebra which is finitely generated and projective as
a k-module. Then for any k′ algebra A′, there exists a k-algebra A with a k-algebra
monomorphism A′ → A defining a vector space isomorphism

homk(A,R) ∼= homk′(A
′, R⊗k k

′) for all k-algebras R.

Proof. Suppose that A′ = k′[x1, . . . , xm]/I ′ Since k′ is finitely generated and projective
over k, we know for any prime ideal p of k that k′p is free of finite rank. In particular, we
can write k′p = kpe1 + · · ·+ kpen for some orthogonal basis of idempotents ei. Consider
the injective kp-algebra homomorphism

Φp : k′p[x1, . . . , xm]→ k′p[y11, . . . , y1n, . . . , ymn], xi 7→
n∑

j=1

yijej .

Note that for all f(x1, . . . , xm)

Φp(f)(y11, . . . , ymn) =

n∑
j=1

Φp,j(f)(y11, . . . , ymn)ej , Φp,j(f) ∈ kp[y11, . . . , ymn].

Then define the ideal
Ip = {Φp,j(f) : 1 ≤ j ≤ n, f ∈ I ′p}
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and consider Ap = kp[y11, . . . , ymn]/Jp. Note that there is a natural k-algebra monomor-
phism

A′p → Ap, f(x1, . . . , xm) 7→ Φp(f)(y11, . . . , ymn),

which induces an algebra homomorphism

Homkp(Ap, R)→ Homkp(A′p, R)→ Homk′p(A′p, R⊗k k
′).

Noting that

Homkp(Ap, R) = {(r11, . . . , rmn) ∈ R : Φp(f)(rij) = 0 ∀f ∈ I ′p}

= {(r11, . . . , rmn) ∈ R : f(ri) = 0 ∀f ∈ I ′p, ri =
∑
j

rijej}

= {(r1, . . . , rm) ∈ R⊗k k
′ : f(ri) = 0 ∀f ∈ I ′p} = Homk′p(A′p, R⊗k k

′).

we see that the above map is an isomorphism.
Now since (direct) limits exist in the category of k-algebras, we can choose a k-algebra

A such that A ⊗k kp ∼= Ap for all p. The maps Φp glue together to a map Φ : A′ → A′

localizing to Φp for all p.

Corollary 28. Suppose that k′ is finitely generated and projective as a k-module. Then
the functor G is an affine group scheme over k. Furthermore, for any group scheme H
over k, we have a bijection

Homk(H,Gk′/k) ∼= Homk′(Hk′ , G)

which is natural in G and H.

Proof. This follows immediately from the previous proposition.
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