
MATH 307: Problem Set #3 Solutions

Due on: April 24, 2013

Problem 1 Autonomous Equations

Recall that an equilibrium solution of an autonomous equation is called stable if
solutions lying on both sides of it tend toward it; is called unstable if solutions lying
on both sides tend away from it; and is called semistable if solutions lying on one side
of it tend toward it, while solutions on the other side tend away. In Prob 2.i-2.vi,
please do each of the following

(a) Sketch a graph of f(y) versus y

(b) Determine the critical (equilibrium) points

(c) Classify the critical points as stable, semistable, or unstable

(d) Draw the phase line and sketch several graphs of the solution in the ty-plane.

(i) dy/dt = ay + by2, where a > 0, b > 0 and y0 ≥ 0

(ii) dy/dt = ay + by2, where a > 0, b > 0 and −∞ < y0 <∞

(iii) dy/dt = ey − 1, −∞ < y0 <∞

(iv) dy/dt = e−y − 1, −∞ < y0 <∞

(v) dy/dt = y(1− y2), −∞ < y0 <∞

(vi) dy/dt = y2(4− y2), −∞ < y0 <∞

. . . . . . . . .

Solution 1.

(i) The plots for problem 1.i are included in Figure (1). There is one unstable phase
point at 0

(ii) The plots for problem 1.ii are included in Figure (2). There is one unstable
phase point at 0 and one stable phase point at −1
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Figure 1: Plots for Problem 1.i

Figure 2: Plots for Problem 1.ii

(iii) The plots for problem 1.iii are included in Figure (3). There is one unstable
phase point at 0
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Figure 3: Plots for Problem 1.iii

(iv) The plots for problem 1.iv are included in Figure (4). There is one stable phase
point at 0

Figure 4: Plots for Problem 1.iv
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(v) The plots for problem 1.v are included in Figure (5). There is one unstable
phase point at 0 and two stable phase points at 1 and −1.

Figure 5: Plots for Problem 1.v (legend omitted for visibility)

(vi) The plots for problem 1.vi are included in Figure (6). There is one semistable
phase point at 0 and one stable phase points at 2 and one unstable phase point
at −2.
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Figure 6: Plots for Problem 1.vi (legend omitted for visibility)

Problem 2 Euler’s Method

For Prob 1.i and 1.ii please do each of the following

(a) Find approximate values of the solution of the given value problem in the interval
[0, 0.5] with ∆t = 0.100 using Euler’s method. Record your results as a table of
values in your writeup.

(b) Find approximate values of the solution of the given value problem in the interval
[0, 0.5] with ∆t = 0.050 using Euler’s method. Record your results as a table of
values in your writeup.

(c) Find approximate values of the solution of the given value problem in the interval
[0, 0.5] with ∆t = 0.025 using Euler’s method. Record your results as a table of
values in your writeup.

(d) Find the exact solution to the initial value problem.

(e) Compare your results in parts (a), (b), (c), and (d) by plotting them all in the
same graph. Be sure that your plot is clear enough that one can tell which curves
correspond to each part.

(i) y′ = 2y − 1, y(0) = 1

(ii) y′ = 3 cos(t)− 2y, y(0) = 0
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. . . . . . . . .

Solution 2.

(i) The plots for problem 2.i are included in Figure (8) below. When you perform
the calculation, the specific data values you should get are

t f(t)
0.000 1.000
0.100 1.100
0.200 1.220
0.300 1.364
0.400 1.537
0.500 1.744

t f(t)
0.000 1.000
0.050 1.050
0.100 1.105
0.150 1.165
0.200 1.232
0.250 1.305
0.300 1.386
0.350 1.474
0.400 1.572
0.450 1.679
0.500 1.797

t f(t)
0.000 1.000
0.025 1.025
0.050 1.051
0.075 1.079
0.100 1.108
0.125 1.138
0.150 1.170
0.175 1.204
0.200 1.239
0.225 1.276
0.250 1.314
0.275 1.355
0.300 1.398
0.325 1.443
0.350 1.490
0.375 1.539
0.400 1.591
0.425 1.646
0.450 1.703
0.475 1.763
0.500 1.827

and the exact solution that you should get is

y =
1

2
(1 + e2t)

(ii) The plots for problem 2.i are included in Figure (8) below. When you perform
the calculation, the specific data values you should get are
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Figure 7: Plot for Problem 2.i. Notice that solutions approach actual solution as dt
decreases.

t f(t)
0.000 0.000
0.100 0.300
0.200 0.539
0.300 0.725
0.400 0.866
0.500 0.969

t f(t)
0.000 0.000
0.050 0.150
0.100 0.285
0.150 0.406
0.200 0.513
0.250 0.609
0.300 0.693
0.350 0.767
0.400 0.832
0.450 0.887
0.500 0.933

t f(t)
0.000 0.000
0.025 0.075
0.050 0.146
0.075 0.214
0.100 0.278
0.125 0.339
0.150 0.396
0.175 0.450
0.200 0.502
0.225 0.550
0.250 0.596
0.275 0.639
0.300 0.679
0.325 0.717
0.350 0.752
0.375 0.785
0.400 0.815
0.425 0.844
0.450 0.870
0.475 0.894
0.500 0.916
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and the exact solution that you should get is

y =
3

5
sin(t) +

6

5
cos(t)− 6

5
(e−2t)

Figure 8: Plot for Problem 2.ii. Notice that solutions approach actual solution as dt
decreases.
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Problem 3 Exact Equations

In each of the following, determine if the equation is exact. If it is exact, then find
the solution.

(i) (2x+ 4y) + (2x− 2y)y′ = 0

(ii) (2xy2 + 2y) + (2x2y + 2x)y′ = 0

(iii) dy
dx

= −ax−by
bx−cy

(iv) (ex sin y + 3y)dx− (3x− ex sin y)dy = 0

(v) (y/x+ 6x)dx+ (ln(x)− 2)dy = 0

(vi) xdx
(x2+y2)3/2

+ ydy
(x2+y2)3/2

= 0

. . . . . . . . .

Solution 3.

(i) My = 4 but Nx = 2, so this is not exact

(ii) My = 4xy + 2 and Nx = 4xy + 2, so this is exact. Therefore there exists a
function ψ(x, y) satisfying ψx = M and ψy = N . Thus

ψ(x, y) =

∫
(2xy2 + 2y)∂x = x2y2 + 2xy + h(y)

for some unknown function h. Then

ψy =
∂

∂y
(x2y2 + 2xy + h(y)) = 2x2y + 2x+ h′(y),

and since ψy = N , we must have

2x2y + 2x+ h′(y) = 2x2y + 2x.

Hence h′(y) = 0, meaning that h is a constant which we can take to be zero. Thus
ψ(x, y) = x2y2 + 2xy, and the solution to to the original differential equation is
ψ(x, y) = C, ie.

x2y2 + 2xy = C

where C is an arbitrary constant.

(iii) We rewrite this equation as

ax− by
bx− cy

+ y′ = 0

Then My = (ac−b2)x
(bx−cy)2 and Nx = 0, so this is not exact
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(iv) My = ex cos(y) + 3 and Nx = −3 + ex sin(y), so this is not exact

(v) My = 1/x and Nx = 1/x, so this is exact Therefore there exists a function
ψ(x, y) satisfying ψx = M and ψy = N . Thus

ψ(x, y) =

∫
(ln(x)− 2)∂y = y ln(x)− 2y + g(x)

for some unknown function g. Then

ψx =
∂

∂x
(y ln(x)− 2y + g(x)) = y/x+ g′(x),

and since ψx = M , we must have

y/x+ g′(x) = y/x+ 6x

Hence g′(x) = 6x, so we can take g(x) = 3x2. Thus ψ(x, y) = y ln(x)−2y+3x2,
and the solution to to the original differential equation is ψ(x, y) = C, ie.

y ln(x)− 2y + 3x2 = C

where C is an arbitrary constant.

(vi) My = −3xy
(x2+y2)5/2

= Nx, so this is exact. Therefore there exists a function ψ(x, y)

satisfying ψx = M and ψy = N . Thus

ψ(x, y) =

∫ (
x

(x2 + y2)3/2

)
∂x =

−1

(x2 + y2)1/2
+ h(y)

for some unknown function h. Then

ψy =
∂

∂y

(
−1

(x2 + y2)1/2
+ h(y)

)
=

y

(x2 + y2)3/2
+ h′(y),

and since ψy = N , we must have

y

(x2 + y2)3/2
+ h′(y) =

y

(x2 + y2)3/2

Hence h′(y) = 0, so h is constant, and we can take it to be zero. Thus ψ(x, y) =
−1

(x2+y2)1/2
, and the solution to to the original differential equation is ψ(x, y) = C,

ie.
−1

(x2 + y2)1/2
= C

where C is an arbitrary constant.
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Problem 4 Integrating Factors

For each of the following, find an integrating factor and solve the given equation

(i) y′ = e2x + y − 1

(ii) ydx+ (2xy − e−2y)dy = 0

(iii)
(

3y + sin(y)
x2y

)
dx+

(
2x+ cos(y)

xy

)
dy = 0 [Hint: Try µ(x, y) = xayb]

(iv)
(

3x+ 6
y

)
+
(

x2

y
+ 3 y

x

)
dy
dx

= 0 [Hint: Try µ(x, y) = µ(xy)]

. . . . . . . . .

Solution 4 (Partial Solution).

(i) We try an integrating factor of the form µ = µ(x). Then

µ(x)y′ = µ(x)e2x + µ(x)y − µ(x)

must be exact. Rewriting this, we see

M(x,y)︷ ︸︸ ︷
−µ(x)e2x − µ(x)y + µ(x) +

N(x,y)︷︸︸︷
µ(x) y′ = 0.

We calculate My = −µ(x) and Nx = µ′(x), and since My = Nx, we must have
µ′(x) = −µ(x), ie. µ(x) = e−x. Hence the equation

−ex − e−xy + e−x + e−xy′ = 0

is exact.

Thus there exists a function ψ(x, y) satisfying ψx = M and ψy = N . This means

ψ(x, y) =

∫
e−x∂y = ye−x + g(x)

for some unknown function g. Then

ψx =
∂

∂x

(
ye−x + g(x)

)
= −ye−x + g′(x),

and since ψx = M , we must have

−ye−x + g′(x) = −ex − e−xy + e−x

Hence g′(x) = −ex + e−x, so g can be taken to be g = −ex − e−x. Thus
ψ(x, y) = ye−x−ex−e−x, and the solution to to the original differential equation
is ψ(x, y) = C, ie.

ye−x − ex − e−x = C.

where C is an arbitrary constant. For simplicity, we may rewrite this as

y = e2x + 1 + Cex.
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(ii) We try an integrating factor of the form µ = µ(y). Then

M(x,y)︷ ︸︸ ︷
µ(y)y dx+

N(x,y)︷ ︸︸ ︷
(2xµ(y)y − µ(y)e−2y) dy = 0

must be exact. Therefore My = Nx, which means that

µ′(y)y + µ(y) = 2µ(y)y.

Which simplifies to
µ′(y)y = (2y − 1)µ(y),

a separable equation. Solving this equation, we obtain µ(y) = e2y/y. Therefore

e2ydx+ (2xe2y − 1/y)dy

is exact.

Thus there exists a function ψ(x, y) satisfying ψx = M and ψy = N . This means

ψ(x, y) =

∫
e2y∂x = xe2y + h(y)

for some unknown function h. Then

ψy =
∂

∂y

(
xe2y + h(y)

)
= 2xe2y + h′(y),

and since ψx = M , we must have

2xe2y + h′(y) = 2xe2y − 1/y

Hence h′(y) = −1/y, so h can be taken to be h = − ln |y|. Thus ψ(x, y) = xe2y−
ln |y|, and the solution to to the original differential equation is ψ(x, y) = C, ie.

xe2y − ln |y| = C.

(iii) We try an integrating factor of the form µ(x, y) = xayb for some unknown
constants a, b. This means that the equation

M(x,y)︷ ︸︸ ︷(
3xayb+1 + xa−2yb−1 sin(y)

)
dx+

N(x,y)︷ ︸︸ ︷(
2xa+1yb + xa−1yb−1 cos(y)

)
dy = 0

must be exact. We calculate

My = 3(b+ 1)xayb + (b− 1)xa−2yb−2 sin(y) + xa−2yb−1 cos(y)

and also
Nx = 2(a+ 1)xayb + (a− 1)xa−2yb−1 cos(y)
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Since My = Nx, we can write My −Nx = 0, which after some algebra becomes

(3b− 2a+ 1)xayb + (b− 1)xa−2yb−2 sin(y) + (2− a)xa−2yb−1 cos(y) = 0.

If this is true for all values of x and y, then the coefficients must all be zero,
meaning

3b− 2a+ 1 = 0

b− 1 = 0

2− a = 0

The solution of this system of equations is a = 2 and b = 1. Hence the equation

M(x,y)︷ ︸︸ ︷(
3x2y2 + sin(y)

)
dx+

N(x,y)︷ ︸︸ ︷(
2x3y + x cos(y)

)
dy = 0

is exact.

Thus there exists a function ψ(x, y) satisfying ψx = M and ψy = N . This means

ψ(x, y) =

∫
3x2y2 + sin(y)∂x = x3y2 + x sin(y) + h(y)

for some unknown function h. Then

ψy =
∂

∂y

(
x3y2 + x sin(y) + h(y)

)
= 2x3y + x cos(y) + h′(y),

and since ψx = M , we must have

2x3y + x cos(y) + h′(y) = 2x3y + x cos(y)

Hence h′(y) = 0, so h is a constant, which we can take to be 0. Thus ψ(x, y) =
x3y2+x sin(y), and the solution to to the original differential equation is ψ(x, y) =
C, ie.

x3y2 + x sin(y) = C.

(iv) Here’s how to handle this problem. Suppose that the integrating factor is of the
form µ(xy). Our original equation is

F (x, y) +G(x, y)y′ = 0

where F (x, y) = 3x+ 6/y and G(x, y) = x2/y + 3y/x. Therefore the equation

M(x,y)︷ ︸︸ ︷
µ(xy)F (x, y) +

N(x,y)︷ ︸︸ ︷
µ(xy)G(x, y) y′ = 0

must be exact! This means that ∂M/∂y = ∂N/∂x. Therefore

xµ′(xy)F (x, y) + µ(xy)
∂F (x, y)

∂y
= yµ′(xy)G(x, y) + µ(xy)

∂G(x, y)

∂x
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Now gathering all the terms that have been hit with a µ on one side, and the
terms that have been hit with a µ′ on the other, we find

(xF (x, y)− yG(x, y))µ′(xy) = µ(xy)

(
∂G

∂x
− ∂F

∂y

)
.

Therefore:
1

µ(xy)
µ′(xy) =

∂G
∂x
− ∂F

∂y

xF (x, y)− yG(x, y)
.

Now if we work it out for our particular values of F and G, and do a bit of
algebra, we find that the right hand side of this equation becomes simply 1

xy
.

Therefore
1

µ(xy)
µ′(xy) =

1

xy
.

Now replacing xy with a new variable z, we gather that

1

µ(z)
µ′(z) =

1

z
.

A solution to this equation is µ(z) = z. Thus µ(xy) = xy is our integrating
factor. Multiplying everything by this, we get

(3x2y + 6x) + (x3 + 3y2)y′ = 0

which is now exact. We solve it in the usual way, obtaining the family of
solutions

x3y + 3x2 + y3 = C.
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