Math 307 Lecture 9 Exact Equations and Integrating Factors Part II

W.R. Casper

Department of Mathematics University of Washington

October 31, 2014

Last time:

• Numerical Approximations

This time:

- Return of Exact Equations and Integrating Factors! Next time:
 - Higher-order Homogeneous Linear Equations with Constant Coefficients

Outline

Exact Equations

- Review of Basic Definitions
- Why do we Like Exact Equations?
- Solving Exact Equations

Integrating Factors

- Integrating Factor Review
- Integrating Factor Examples

Review of Basic Definitions Why do we Like Exact Equations? Solving Exact Equations

What is an Exact Equation?

 Remember that any first-order ODE can be written in the form

$$M(x,y)+N(x,y)y'=0.$$

• Recall the definition of an exact equation:

 Definition

 An equation of the above form is *exact* if and only if

 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

That's well and good, but let's see some examples!

Review of Basic Definitions Why do we Like Exact Equations? Solving Exact Equations

What is an Exact Equation?

In each of the following, let's try to decide if the equation is exact

- $y\cos(xy) + x\cos(xy)y' = 0$
- Yes!
- $y\cos(xy) \tan(x) + x\cos(xy)y' = 0$
- Yuppers!
- $2xy + x^2yy' = 0$
- No sir!
- $ye^{xy} + (xe^{xy} + \sec^2(y))y' = 0$
- You 'betcha!

Review of Basic Definitions Why do we Like Exact Equations? Solving Exact Equations

Why are Exact Equations Nice?

• The next theorem tells us why we love exact equations:

Theorem

Suppose that the equation

$$M(x,y)+N(x,y)y'=0$$

is exact and that M, N are "nice enough". Then there exists a function $\psi(x, y)$ such that

$$rac{\partial \psi}{\partial x} = M(x,y) ext{ and } rac{\partial \psi}{\partial y} = N(x,y)$$

Review of Basic Definitions Why do we Like Exact Equations? Solving Exact Equations

Why are Exact Equations Nice?

- It may not look like it yet, but the previous theorem helps us to solve exact equations!
- To see why, let's calculate $\frac{d\psi}{dx}$ using implicit differentiation:

$$\frac{d\psi(x, y)}{dx} = \frac{\partial\psi}{\partial x}\frac{dx}{dx} + \frac{\partial\psi}{\partial y}\frac{dy}{dx}$$
$$= \frac{\partial\psi}{\partial x} + \frac{\partial\psi}{\partial y}y'$$
$$= M(x, y) + N(x, y)y$$

Review of Basic Definitions Why do we Like Exact Equations? Solving Exact Equations

Why are Exact Equations Nice?

• Thus the differential equation

$$M(x,y)+N(x,y)y'=0$$

becomes the equation

$$\frac{d\psi(x,y)}{dx}=0$$

• Integrating both sides with respect to x, the solution is then

$$\psi(\mathbf{X},\mathbf{Y})=\mathbf{C}$$

• We've solved the exact equation!!

Review of Basic Definitions Why do we Like Exact Equations? Solving Exact Equations

Solving Exact Equations

- We've found that the solution to an exact equation is given implicitly by ψ(x, y) = C
- One important question you should be asking yourself now is how do we determine ψ(x, y)?
- The answer is "partial integration"
- To see what we mean, let's look at some examples!

Review of Basic Definitions Why do we Like Exact Equations? Solving Exact Equations

Solving Exact Equations: A First Example

• Consider the equation

$$\underbrace{\frac{M(x,y)}{y\cos(xy)-\tan(x)}}_{+x\cos(xy)} + \underbrace{\frac{N(x,y)}{x\cos(xy)}}_{+x\cos(xy)} y' = 0$$

- This equation is exact (check this!)
- This means that there is a $\psi(x, y)$ satisfying

$$\frac{\partial \psi(x, y)}{\partial y} = N(x, y) = x \cos(xy).$$

• Doing a partial integral of both sides,

$$\int \frac{\partial \psi(x, y)}{\partial y} \partial y = \int x \cos(xy) \partial y$$

Review of Basic Definitions Why do we Like Exact Equations? Solving Exact Equations

Solving Exact Equations: A First Example

• Doing a partial integral of both sides,

$$\psi(\mathbf{x},\mathbf{y}) = \int \mathbf{x}\cos(\mathbf{x}\mathbf{y})\partial\mathbf{y}$$

• To do the partial integral wrt. *y*, you treat *x* as a constant:

- With partial integrals, we end up with an arbitrary "function of integration" instead of an arbitrary constant
- Notice we integrated wrt. y so we get an arbitrary func of x

Solving Exact Equations: A First Example

- How can we figure out what g(x) must be?
- Remember that

$$\partial \psi / \partial x = M(x, y)$$

• Therefore

$$y\cos(xy) + g'(x) = y\cos(xy) - \tan(x).$$

This simplifies to g'(x) = -tan(x), so that g(x) = ln |cos(x)| (we can forget the constant)
Thus

$$\psi(x,y) = \sin(xy) + \ln|\cos(x)|$$

• Solution is therefore sin(xy) + ln |cos(x)| = C

Solving Exact Equations: A Second Example

- Let's look at another example!
- Consider the equation

$$\overbrace{ye^{xy}}^{M(x,y)} + \overbrace{xe^{xy} + \sec^2(y)}^{N(x,y)} y' = 0$$

- This equation is exact (check this!)
- This means that there is a $\psi(x, y)$ satisfying

$$\frac{\partial \psi(x,y)}{\partial x} = M(x,y) = y e^{xy}.$$

• Doing a partial integral of both sides,

J

$$\int \frac{\partial \psi(x, y)}{\partial x} \partial x = \int y e^{xy} \partial x$$

Solving Exact Equations: A Second Example

• Doing a partial integral of both sides,

$$\psi(\mathbf{x},\mathbf{y}) = \int \mathbf{y} \mathbf{e}^{\mathbf{x}\mathbf{y}} \partial \mathbf{x}$$

• To do the partial integral wrt. x, you treat y as a constant:

$$\psi(\mathbf{x},\mathbf{y})=\mathbf{e}^{\mathbf{x}\mathbf{y}}+\mathbf{h}(\mathbf{y})$$

- With partial integrals, we end up with an arbitrary "function of integration" h(y) instead of an arbitrary constant
- Notice we integrated wrt. x so we get an arbitrary func of y

Solving Exact Equations: A Second Example

- How can we figure out what *h*(*y*) must be?
- Remember that

$$\partial \psi / \partial y = N(x, y)$$

Therefore

$$xe^{xy} + h'(y) = xe^{xy} + \sec^2(y).$$

 This simplifies to h'(y) = sec²(y), so that h(y) = tan(y) (we can forget the constant)

Thus

$$\psi(\mathbf{x},\mathbf{y})=\mathbf{e}^{\mathbf{x}\mathbf{y}}+\tan(\mathbf{y})$$

• Solution is therefore $e^{xy} + \tan(y) = C$

Integrating Factor Review Integrating Factor Examples

What if the Equation is not Exact?

Figure : A graphical depiction of the ecstasy one feels when the nonlinear first order equation is exact

W.R. Casper Math 307 Lecture 9

What if the Equation is not Exact?

Figure : Eeyore never gets exact equations on exams

- "most" nonlinear first order equations are not exact
- Q: what should we do with such an equation?
- A: try to find an integrating factor!
- this will be **totally impossible** in general
- but it will work often enough to make it worth a try...

Integrating Factor Review Integrating Factor Examples

What if the Equation is not Exact?

- Remember, an integrating factor is a function µ(x, y) that we multiply by to make the equation exact
- When we try to find one, we often make an assumption about the form

• eg.
$$\mu(\mathbf{x}, \mathbf{y}) = \mu(\mathbf{x})$$

• or
$$\mu(\mathbf{x}, \mathbf{y}) = \mu(\mathbf{y})$$

- or $\mu(x, y) = x^a y^b$
- these might not work; μ may be too hard to find!

Figure : Eeyore getting help from his turtle friend to find an integrating factor

Integrating Factor Review Integrating Factor Examples

Integrating Factor Example 1

Example

Solve the first order equation

$$y + (2x - ye^y)y' = 0$$

by finding an integrating factor of the form $\mu(x, y) = \mu(y)$.

- $\mu(y)y + (2x ye^y)\mu(y)y' = 0$ exact
- Implies $\mu'(\mathbf{y})\mathbf{y} + \mu(\mathbf{y}) = 2\mu(\mathbf{y})$
- Results in $\mu'(y)y = \mu(y)$; a solution is $\mu(y) = y$

Integrating Factor Example 1

• Thus we get an exact equation

$$y^2 + (2xy - y^2e^y)y' = 0$$

• We know
$$\psi(x, y) = \int y^2 \partial x = xy^2 + h(y)$$

• Since
$$\frac{\partial \psi}{\partial y} = N(x, y)$$
, we also know $2xy + h'(y) = 2xy - y^2 e^y$

• Hence
$$h = \int -y^2 e^y dy = -(y^2 - 2y + 2)e^y$$

• Thus
$$\psi(x, y) = xy^2 - (y^2 - 2y + 2)e^{y}$$

• Solution is
$$\psi(x, y) = C$$
, ie.

$$xy^2-(y^2-2y+2)e^y=C$$

Integrating Factor Review Integrating Factor Examples

Integrating Factor Example 2

Example

Solve the first order equation

$$(x+2)\sin(y)+x\cos(y)y'=0$$

by finding an integrating factor of the form $\mu(x, y) = \mu(x)$.

Try it yourself!

Integrating Factor Review Integrating Factor Examples

Integrating Factor Example 3

Example

Solve the first order equation

$$x^2y^3 + x(1+y^2)y' = 0$$

by finding an integrating factor of the form $\mu(x, y) = x^a y^b$ for some constants *a*, *b*

• Try it yourself!

Integrating Factor Review Integrating Factor Examples

Review!

Today:

• More on Exact Equations and Integrating Factors

Next time:

 Higher-order Homogeneous Linear Equations with Constant Coefficients