Math 307 Lecture 11 Second-Order Homogeneous Linear ODEs with Constant Coefficients II

W.R. Casper

Department of Mathematics University of Washington

October 31, 2014

Today!

Last time:

- Looked at 2nd-Order Hom. Lin. Eqns. with Constant Coefficients for the first time
- Found out how to solve them in the case that the characteristic polynomial had distinct roots

This time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having complex roots

Next time:

• 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

Complex Numbers Complex Roots of the Characteristic Polynomial

- Complex Number Basics
- Euler's Definition
- 2 Complex Roots of the Characteristic Polynomial
 - General solutions to 2nd Order Linear ODEs with Const. Coeff
 - General Case

What are imaginary numbers?

- An *imaginary number* is any real number multiplied by $\sqrt{-1}$
- Usually denote this by i
- examples: 13*i*, $\sqrt{2}i$, -4*i*, πi

Figure : Imaginary numbers are very real to tigers

Calvin and Hobbes

by Bill Watterson

Complex Numbers Complex Roots of the Characteristic Polynomial Complex Number Basics Euler's Definition

What are complex numbers?

DefinitionA complex number z is a number of the form $z = \widehat{a}^{real part} + \widehat{b}^{imaginary part}$ $z = \widehat{a}^{real} + \widehat{b}^{imaginary part}$ where a and b are any real numbers.

- Any real number is a complex number also
- Any imaginary number is a complex number also

•
$$2+3i$$
, $-\sqrt{7}-\frac{1}{2}i$ and $4+2\pi i$ are complex numbers too

Question

How do we add, subtract, multiply, and divide complex numbers by other complex numbers?

Addition and Subtraction:

- To add complex things, just add real and imaginary parts.
- For example

$$(2+3i) + (4+2\pi i) = 6 + (3+2\pi)i$$

• Similar story for subtraction...

$$(2+3i) - (4+2\pi i) = -2 + (3-2\pi)i$$

Question

How do we add, subtract, multiply, and divide complex numbers by other complex numbers?

Multiplication:

- To multiply complex things, we have to "foil", remembering that $i^2 = -1$
- For example

$$egin{aligned} (2+3i) \cdot (4+2\pi i) &= 2 \cdot 4 + 2 \cdot 2\pi i + 3i \cdot 4 + 3i \cdot 2\pi i \ &= 8 + 4\pi i + 12i + 6\pi i^2 \ &= 8 + 4\pi i + 12i - 6\pi \ &= (8-6\pi) + (12+4\pi)i \end{aligned}$$

Question

How do we add, subtract, multiply, and divide complex numbers by other complex numbers?

Inverses:

- We calculate the inverse of a complex number z = a + bi by using the complex conjugate trick
- Complex conjugate is $z^* = a bi$

$$\frac{1}{a+bi} = \frac{1}{a+bi} \cdot 1 = \frac{1}{a+bi} \cdot \frac{(a-bi)}{(a-bi)} \\ = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-ib}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

Question

How do we add, subtract, multiply, and divide complex numbers by other complex numbers?

Division:

- We divide by multiplying by the inverse
- Alternatively we apply complex conjugate trick
- For example

$$\frac{4+2\pi i}{2+3i} = \frac{4+2\pi i}{2+3i} \cdot 1 = \frac{4+2\pi i}{2+3i} \cdot \frac{(2-3i)}{(2-3i)}$$
$$= \frac{(4+2\pi i) \cdot (2-3i)}{(2+3i) \cdot (2-3i)} = \frac{8+6\pi}{13} + \frac{4\pi-12}{13}i$$

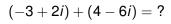
Try it Yourself!

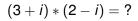
۲

۲

Complex Number Basics Euler's Definition

Have a go at the following calculations:



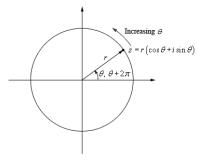


$$\frac{1+2i}{3-7i}=?$$

Complex Numbers Complex Roots of the Characteristic Polynomial Complex Number Basics Euler's Definition

Complex numbers as vectors

Figure : A complex number is a vector in the plane



- We can "visualize" a complex number z = x + iy as a vector
- The tip of the vector is put at the point (*x*, *y*)
- The base of the vector is put at the origin
- Using polar coordinates, we can write

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Complex Number Basics Euler's Definition

Euler's Definition

Definition

If θ is a real number, then we *define*

$$e^{i\theta} = \cos(\theta) + i\sin(\theta).$$

Theorem

This definition does not break anything.

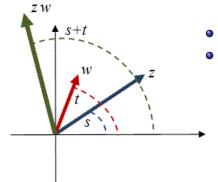
- Q: What do we mean by this?
- A: $e^{i\theta}e^{i\phi} = e^{i(\theta+\phi)}$
- Also, this makes sense in a power-series sort of way:

$$\sum_{k=0}^{\infty} \frac{(i\theta)^k}{k!} = \sum_{k=0}^{\infty} \frac{(-1)^k \theta^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(-1)^k \theta^{2k+1}}{(2k+1)!} i = \cos(\theta) + \sin(\theta)i = e^{i\theta}$$

Complex Number Basics Euler's Definition

Complex numbers as vectors

Figure : What does multiplication do to vectors?



- Take a complex number x + iy
- Convert (x, y) to polar: $r = \sqrt{x^2 + y^2}$ $\theta = \tan^{-1}(y/x)$

• Then
$$x + iy = re^{i\theta}$$
 also!

• If $z = r_0 e^{is}$ and $w = r_1 e^{it}$ then

$$zw = r_0 r_1 e^{i(s+t)}$$

Angles add! (see figure)

Complex Number Basics Euler's Definition

A few more definitions

Figure : SMBC

Image redacted

- Let $z = re^{i\theta}$ be a complex number
- θ is called the *argument* of z
- r is called the modulus of z and is sometimes denoted as |z|
- easy exercise: show $r^2 = z \cdot z^*$
- Q: why do we care about complex numbers?
- A: simple! They give us more roots of polynomials!

Example

Find the general solution of the second-order homogeneous linear ODE

$$y''-2y'+2y=0$$

- How do we find the general solution?
- First we bluff and say we already know our solution: $y = e^{rt}$.
- This means $y' = re^{rt}$ and $y'' = r^2 e^{rt}$

• Then since *y* is a solution

$$0 = y'' - 2y' + 2y$$

= $r^2 e^{rt} - 2re^{rt} + 2e^{rt}$
= $(r^2 - 2r + 2)e^{rt}$

- Therefore $r^2 2r + 2 = 0$
- Roots of the polynomial $r^2 2r + 2$ are $1 \pm i$
- This means $y = e^{(1+i)t}$ and $y = e^{(1-i)t}$ are both solutions!
- Wait a minute, these are complex-valued functions!

• We only want real-valued solutions. So look at the general solution (obtained by superposition principal):

$$y = Ae^{(1+i)t} + Be^{(1-i)t}$$

Using Euler's formula

$$y = Ae^{t}\cos(t) + iAe^{t}\sin(t) + Be^{t}\cos(t) - iBe^{t}\sin(t)$$
$$= (A + B)e^{t}\cos(t) + i(A - B)e^{t}\sin(t)$$

• Here *A* and *B* should also be allowed to be *complex* and must be chosen to make *y* real

- Set C = A + B and D = i(A B)
- Then *C* and *D* are arbitrary constants and the general solution is

$$y = Ce^t \cos(t) + De^t \sin(t)$$

• Note: C and D must be real to make y real...

General Case

Consider the equation

$$y'' + ay' + by = 0$$

- The corresponding characteristic polynomial will be $r^2 + ar + b$
- Roots come in conjugate pairs
- Suppose $r^2 + ar + b$ has the root $\alpha + \beta i$
- Then it will also have the root $\alpha \beta i$
- Therefore the general (complex-valued) solution will look like

$$y = Ae^{(\alpha+i\beta)t} + Be^{(\alpha-i\beta)t}$$

General Case

Euler's formula will then give

$$y = (A+B)e^{\alpha t}\cos(\beta t) + (A-B)e^{\alpha t}\sin(\beta t)i$$

• Setting C = A + B and D = (A - B)i, the (real) general solution is

$$y = Ce^{\alpha t}\cos(\beta t) + De^{\alpha t}\sin(\beta t)$$

• Again *C* and *D* are completely arbitrary, but must be real-valued for *y* to be real.

General solutions to 2nd Order Linear ODEs with Const. Coeff General Case

Find the general solutions:

Try it Yourself!

۲

٢

۲

$$y^{\prime\prime}+2y^{\prime}-8y=0$$

$$y'' + 6y' + 13y = 0$$

$$y'' + 2y' + 1.25y = 0$$

Review!

Today:

- Complex numbers and Euler's definition
- What happens when the characteristic polynomial has complex roots

Next time:

• What happens when the characteristic polynomial has repeated roots