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Today!

Last time:
2nd-Order Hom. Lin. Eqns. with Constant Coefficients with
characteristic polynomials having repeated roots

This time:
2nd-Order Nonhomogeneous Linear ODEs. with Constant
Coefficients
Method of Undetermined Coefficients

Next time:
More on 2nd-Order Nonhomogeneous Linear ODEs. with
Constant Coefficients
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Nonhomogeneous Equations

Recall that a general second order linear equation is
something of the form

a(t)y ′′ + b(t)y ′ + c(t)y = f (t),

with a,b, c and f are functions.
It is nonhomogeneous if and only if f is nonzero.
For example the equation

y ′′ = 3y ′ − 4y = 3e2t

is nonhomogeneous.
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Associated Homogeneous Equation

Suppose we have a nonhomogeneous equation (f 6= 0):

a(t)y ′′ + b(t)y ′ + c(t)y = f (t),

We have the following definition.

Definition
The associated homogeneous equation is the equation

a(t)y ′′ + b(t)y ′ + c(t)y = 0,

Solutions to the nonhomogeneous and homogeneous
equations are intimately related.
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Associated Homogeneous Equation

In what way could they be related?

Theorem
If Y1 and Y2 are solutions of a nonhomogeneous lnear
equation, then Y1 − Y2 is a solution to the corresponding
homogeneous equation.

Why is this?
It’s because linear differential equations act linearly on y
To understand what we mean by this, we need to think
about linear differential equations in a new way!
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Linear Equations as Linear Operators

For any function y , we define

L[y ] = a(t)y ′′ + b(t)y ′ + c(t)y .

Notice that if y1 and y2 are functions, and A and B are
constants then (check this!)

L[Ay1 + By2] = AL[y1] + BL[y2].

Also the equation

a(t)y ′′ + b(t)y ′ + c(t)y = f (t)

may be written as L[y ] = f (t).
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Linear Equations as Linear Operators

Let Y1 and Y2 be solutions of

a(t)y ′′ + b(t)y ′ + c(t)y = f (t)

Then L[Y1] = f (t) and L[Y2] = f (t)
Then

L[Y1 − Y2] = L[Y1]− L[Y2] = f (t)− f (t) = 0.

Hence

a(t)(Y1 − Y2)
′′ + b(t)(Y1 − Y2)

′ + c(t)(Y1 − Y2) = 0

This shows why our theorem is true
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Finding general solutions

We have the following consequence of the previous
theorem

Theorem
If Y is any solution to a nonhomogeneous linear equation, and
y1 and y2 are (independent) solutions of the corresponding
homogeneous linear equation, then the general solution to the
nonhomogeneous equation is

y(t) = C1y1(t) + C2y2(t) + Y (t)

So how can we find the general solution to an
inhomogeneous equation?
Find the general solution to the homogeneous equation...
and add to it any one inhomogeneous solution!
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A First Example

Example
Find the general solution of the equation

y ′′ − 3y ′ − 4y = 3e2t .

First we find the general solution of the corresponding
homogeneous equation

y ′′ − 3y ′ − 4y = 0.

The corresponding characteristic polynomial is r2 − 3r − 4,
which has roots r1 = 4 and r2 = −1.
Therefore the general solution to the homogeneous
equation is

yh = C1e4t + C2e−t .
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Now we need to try to find a particular solution Y (t) to the
inhomogeneous equation
How should we go about this?
Try to guess a reasonable form for Y . We guess
Y (t) = Ae2t for some constant A.
Then Y ′ = 2Ae2t and Y ′′ = 4Ae2t , so that

Y ′′ − 3Y ′ − 4Y = 4Ae2t − 6Ae2t − 4Ae2t = −6Ae2t .

Since Y ′′ − 3Y ′ − 4Y = 3e2t , this means A = −1/2, so
that Y (t) = −1

2e2t

The general solution is then

y = yh + Y = C1e4t + C2e−t − 1
2

e2t .
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A Second Example

Example
Find the general solution of the equation

y ′′ − 3y ′ − 4y = 2 sin(t).

First we find the general solution of the corresponding
homogeneous equation

y ′′ − 3y ′ − 4y = 0.

It’s the same as last time! The general solution is

yh = C1e4t + C2e−t .
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A Second Example

What about a particular solution Y (t) ?
A slick trick is to instead consider the complex equation

ỹ ′′ − 3ỹ ′ − 4ỹ = 2eit .

We’ve replace y with ỹ to remind ourselves that its a new
equation
Why is this a good idea?
Suppose Ỹ is a particular complex solution. If we define
Y = =(Ỹ ) (the imaginary part of Y ) then

Y ′′ − 3Y ′ − 4Y = =Ỹ ′′ − 3=Ỹ ′ − 4=Ỹ

= =(Ỹ ′′ − 3Ỹ ′ − 4Ỹ )

= =(2eit) = 2 sin(t)
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A Second Example

So if we can find Ỹ and take its imaginary component, we
get a particular solution to the original equation!
How can we find a particular solution Ỹ to the complex
equation then?
It again seems reasonable to try Ỹ = Aeit for some
undetermined constant A
Then Ỹ ′ = iAeit and Ỹ ′′ = −Aeit , so that

Ỹ ′′ − 3Ỹ ′ − 4Ỹ = −Ae2t − 3iAe2t − 4Ae2t = (−5− 3i)Ae2t .

Then since Ỹ ′′ − 3Ỹ ′ − 4Ỹ = 2e−it , we must have
(−5− 3i)A = 2
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Dividing both sides by (−5− 3i) we obtain

A =
2

−5− 3i
=

2
−5− 3i

−5 + 3i
−5 + 3i

=
−10 + 6i

34
=
−5
17

+
3
17

i

Putting this into our expression for Ỹ , we get

Ỹ =

(
−5
17

+
3
17

i
)

eit =

(
−5
17

+
3

17
i
)
(cos(t) + i sin(t))

=

(
− 5

17
+

3
17

i
)

cos(t) +
(
− 3

17
− 5

17
i
)

sin(t)
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Our particular solution Y can then be found by taking the
imaginary component of Ỹ
Therefore we have our particular solution!

Y = =(Ỹ ) =
3

17
cos(t)− 5

17
sin(t)

General solution to the inhomogeneous equation is then

y = yh + Y = C1e4t + C2e−t +
3

17
cos(t)− 5

17
sin(t)
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A Third Example

Example
Find the general solution of the equation

y ′′ − 3y ′ − 4y = 2 cos(t).

First we find the general solution of the corresponding
homogeneous equation

y ′′ − 3y ′ − 4y = 0.

It’s the same as last time! The general solution is

yh = C1e4t + C2e−t .
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A Third Example

What about a particular solution Y (t) ?
A slick trick is to instead consider the complex equation

ỹ ′′ − 3ỹ ′ − 4ỹ = 2eit .

We’ve replace y with ỹ to remind ourselves that its a new
equation
Why is this a good idea?
Suppose Ỹ is a particular complex solution. If we define
Y = <(Ỹ ) (the real part of Y ) then

Y ′′ − 3Y ′ − 4Y = <Ỹ ′′ − 3<Ỹ ′ − 4<Ỹ

= <(Ỹ ′′ − 3Ỹ ′ − 4Ỹ )

= <(2eit) = 2 cos(t)
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A Third Example

So if we can find Ỹ and take its real component, we get a
particular solution to the original equation!
How can we find a particular solution Ỹ to the complex
equation then?
We did this already earlier! We found

Ỹ =

(
− 5

17
+

3
17

i
)

cos(t) +
(
− 3

17
− 5

17
i
)

sin(t)

And therefore we have our particular solution!

Y = <(Ỹ ) = − 5
17

cos(t)− 3
17

sin(t)

So the general solution is

y = yh + Y = C1e4t + C2e−t − 5
17

cos(t)− 3
17

sin(t)
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A Fourth Example

Example
Find the general solution of the equation

y ′′ − 3y ′ − 4y = 3 cos(t)− 7 sin(t).

First we find the general solution of the corresponding
homogeneous equation

y ′′ − 3y ′ − 4y = 0.

It’s the same as last time! The general solution is

yh = C1e4t + C2e−t .
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A Fourth Example

What about a particular solution?
Let L[y ] = y ′′ − 3y ′ − 4y
Earlier, we found functions Y1 and Y2 satisfying
L[Y1] = 2 sin(t) and L[Y2] = 2 cos(t), namely

Y1 =
3
17

cos(t)− 5
17

sin(t)

Y2 = − 5
17

cos(t)− 3
17

sin(t)
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Therefore, if we take Y = −7
2 Y1 +

3
2Y2, then

L[Y ] = L
[
−7
2

Y1 +
3
2

Y2

]
=
−7
2

L[Y1] +
3
2

L[Y2]

=
−7
2

(2 sin(t)) +
3
2
(2 cos(t)) = −7 sin(t) + 3 cos(t).

This Y is a particular solution!

Y =
−18
17

cos(t) +
13
17

sin(t)

General solution is then

y = yh + Y = C1e4t + C2e−t − 18
17

cos(t) +
13
17

sin(t)
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A Fifth Example

Example
Find the general solution of the equation

y ′′ − 3y ′ − 4y = −8et cos(2t).

First we find the general solution of the corresponding
homogeneous equation

y ′′ − 3y ′ − 4y = 0.

It’s the same as last time! The general solution is

yh = C1e4t + C2e−t .
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A Fifth Example

What about a particular solution?
A slick trick is to consider the complex equation

ỹ ′′ − 3ỹ ′ − 4ỹ = −8e(1+2i)t .

We’ve replace y with ỹ to remind ourselves that its a new
equation
Why is this a good idea?
Suppose Ỹ is a particular complex solution. If we define
Y = <(Ỹ ) (the real part of Y ) then

Y ′′ − 3Y ′ − 4Y = <Ỹ ′′ − 3<Ỹ ′ − 4<Ỹ

= <(Ỹ ′′ − 3Ỹ ′ − 4Ỹ )

= <(−8e(1+2i)t) = −8et cos(2t)
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A Fifth Example

So if we can find Ỹ and take its real component, we get a
particular solution to the original equation!
How can we find a particular solution Ỹ to the complex
equation then?
It again seems reasonable to try Ỹ = Ae(1+2i)t for some
undetermined constant A
Then Ỹ ′ = (1 + 2i)Aeit and Ỹ ′′ = (−3 + 4i)Aeit , so that

Ỹ ′′ − 3Ỹ ′ − 4Ỹ = (−3 + 4i)Ae2t − 3(1 + 2i)Ae2t − 4Ae2t

= (−10− 2i)Ae2t

Then since Ỹ ′′ − 3Ỹ ′ − 4Ỹ = −8e−(1+2i)t , we must have
(−10− 2i)A = −8
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A Fifth Example

Dividing both sides by (−8− 2i) we obtain

A =
−8

−10− 2i
=

4
5 + i

=
4

5 + i
5− i
5− i

=
20− 4i

26
=

10
13
− 2

13
i

Putting this into our expression for Ỹ , we get

Ỹ =

(
10
13
− 2

13
i
)

e(1+2i)t =

(
10
13
− 2

13
i
)

et(cos(2t) + i sin(2t))

=

(
10
13
− 2

13
i
)

et cos(2t) +
(

2
13

+
10
13

i
)

et sin(2t)
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A Fifth Example

Our particular solution Y can then be found by taking the
real component of Ỹ
And therefore we have our particular solution!

Y = <(Ỹ ) =
10
13

et cos(2t) +
2
13

et sin(2t)

General solution to the inhomogeneous equation is then

y = yh + Y = C1e4t + C2e−t +
10
13

et cos(2t) +
2
13

et sin(2t)

W.R. Casper Math 307 Lecture 13



A First Look at Nonhomogeneous Equations
Example Lovefest

A few good examples
Try it Yourself

Try It Yourself!

Find the general solutions of the following equations:
y ′′ − 2y ′ − 3y = 3e2t

y ′′ − 2y ′ − 3y = e−t sin(t)
y ′′ − 2y ′ − 3y = e−t cos(t)
y ′′ − 2y ′ − 3y = 2e2t − 3e−t cos(t) + 4e−t sin(t)
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