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Last time:

@ Review of first order linear and separable ODEs
This time:

@ First homework due Friday!!!

@ Modeling first-order equations
Next time:

@ Differences between linear and nonlinear equations
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0 Linear Equation for Mixing
9 Radiative Heat Transfer

e Holes in a Bucket
@ Torricelli's Law
@ A story problem

Q Pebble falling in Syrup
@ Stoke’s Law
@ A story problem
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

Figure : Rate of pollution of a
pond can be modeled by a linear
ordinary differential equation
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Our First Example Model: Mixing fluids

@ Polluted water flows into
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

@ Polluted water flows into
Figure : Rate of pollution of a a pond
pond can be modeled by a linear

ordinary differential equation @ Volume of pond

(constant): V = 107 gal
@ Amount of pollutant in
pond: P (metric tons)

@ Toxic sludge flows in at
5 x 10° gal/yr

@ Toxic sludge contains
2 + sin(2t) grams of
pollutant per gallon
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

@ Polluted water flows into
Figure : Rate of pollution of a a pond
pond can be modeled by a linear

ordinary differential equation @ Volume of pond

(constant): V = 107 gal

@ Amount of pollutant in
pond: P (metric tons)

@ Toxic sludge flows in at
5 x 10° gal/yr

@ Toxic sludge contains
2 + sin(2t) grams of
pollutant per gallon

@ Lake unpollutedatt =0

W.R. Casper Math 307 Lecture 5




Linear Equation for Mixing

Our First Example Model: Mixing fluids

How does the amount of pollutant change over time?
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

How does the amount of pollutant change over time?

dP .
— = rate in — rate out
at
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

How does the amount of pollutant change over time?

= rate in — rate out

dt
gal. toxic sludge/yr grams/ton
——
ratein=(5x10%) - (2+sin(2t)) - (1079)
—_——

grams pollutant/gal
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

How does the amount of pollutant change over time?

= rate in — rate out

dt
gal. toxic sludge/yr grams/ton
——
ratein=(5x10%) - (2+sin(2t)) - (1079)
—_——

grams pollutant/gal

gal. mixed pond water/yr
—

rateout= (5x10%) . P(t)/V

metric tons pollutant/gal

W.R. Casper Math 307 Lecture 5



Linear Equation for Mixing

Our First Example Model: Mixing fluids
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

@ Need to solve the IVP
P(0) =0 and
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

@ Need to solve the IVP

P(0) =0 and

dpP . 1

o 10+5 S|n(2t)—§P. ﬁ
?NNWMWWW
[
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

@ Need to solve the IVP

P(0) =0 and
dP . 1
o 10+5 sm(2t)—§P. 2,
S VATATAVAVAVAVAVAVAVAVATAVAYS
@ Integrating factor is M
u(t) = e'/? [‘
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

@ Need to solve the IVP
P(0) =0 and

dP

. 1
~ = 10+5sin(2)—5P.

S VATAVATAVAVAVAVAVAVAVAVAVAVS
@ Integrating factor is M

p(t) = et/ f
@ Solution given below 3
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Linear Equation for Mixing

Our First Example Model: Mixing fluids

@ Need to solve the IVP

P(0) = 0 and Figure : Rate of pollution of a
pond can be modeled by a linear
daP 1 ordinary differential equation

S VATAVATAVAVAVAVAVAVAVAVAVAVS
@ Integrating factor is M

p(t) = et/ f
@ Solution given below 3

@ Limit behavior consists of |
oscillation about P=20
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Radiative Heat Transfer

Our Next Example Model: Radiative Heat Transfer

Figure : Radiative heat
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Our Next Example Model: Radiative Heat Transfer

Figure : Radiative heat
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Radiative Heat Transfer

Our Next Example Model: Radiative Heat Transfer

@ Stefan-Boltzmann law:

v _
at

Figure : Radiative heat
—a(U* — T4

@ U abs. temp. of body

@ T abs. temp. of space
@ « constant depending on
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Radiative Heat Transfer

Our Next Example Model: Radiative Heat Transfer

@ Stefan-Boltzmann law:

v _
at

Figure : Radiative heat
—a(U* — T4

@ For U >> T, we can
approximate

v _
at

—alU*

@ U abs. temp. of body

@ T abs. temp. of space
@ « constant depending on
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Radiative Heat Transfer

Our Next Example Model: Radiative Heat Transfer

@ Stefan-Boltzmann law:

v _
at

Figure : Radiative heat
—a(U* — T4

@ For U >> T, we can
approximate

v _
at

—alU*

@ U abs. temp. of body

@ T abs. temp. of space @ Separable! Solution is

- _ 1
@« cgngtgnt depending on U= Balr0)' /3
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Torricelli’s Law
Holes in a Bucket A story problem

Outline

e Holes in a Bucket
@ Torricelli’s Law
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Torricelli’s Law
Holes in a Bucket A story problem

Torricelli’s Law

Figure : Water under more
pressure shoots faster/farther

Spoutmg can Water

Hc\es for jets

Weakesl jet

Strcngest jet

Pressure increases with depth
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Holes in a Bucket A story problem

Torricelli’s Law

@ Torricelli’'s law says

Figure : Water under more e v—+/2ah
pressure shoots faster/farther g )
@ Outflow velocity: v

Spoutmg can Water

Hc\es for jets

Weakesl jet

Pressure increases with depth

Strcngest jet
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Torricelli’s Law
Holes in a Bucket A story problem

Torricelli’s Law

@ Torricelli’'s law says

Figure : Water under more e v—+/2ah
pressure shoots faster/farther g )
@ Outflow velocity: v

Spoutmg can Water

Hc‘es forjets @ Water level above
opening: h

Weakesl jet

Strcngest jet

Pressure increases with depth
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Torricelli’s Law
Holes in a Bucket A story problem

Torricelli’s Law

@ Torricelli’'s law says

Figure : Water under more e v—+/2ah
pressure shoots faster/farther g )
@ Outflow velocity: v

Spoutmg can Water

Ho‘esfornets @ Water level above
opening: h

@ How fast does water
leave the tank?

Weakesl jet

Strcngest jet

Pressure increases with depth
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Torricelli's Law
Holes in a Bucket A story problem

Outline

e Holes in a Bucket

@ A story problem
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

Figure : “You've got to ask
yourself one question: 'Do | feel
lucky?’ Well, do ya punk?” —
Clint Eastwood on Differential
Equations
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Clint Eastwood shoots a
Figure : “You've got to ask cylindrical barrel of
yourself one question: ‘Do | feel whiskey dead center
lucky?’ Well, do ya punk?” —
Clint Eastwood on Differential
Equations
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Clint Eastwood shoots a
Figure : “You've got to ask cylindrical barrel of

yourself one question: 'Do | feel whiskey dead center
lucky?" Well, do ya punk?” - bullet d t!
Clint Eastwood on Differential @ pulle’ doss notleave
Equations arrel
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Clint Eastwood shoots a
Figure : “You've got to ask cylindrical barrel of
yourself one question: ‘Do | feel whiskey dead center
lucky?’ Well, do ya punk?” —
Clint Eastwood on Differential @ bullet does not leave
Equations barrel
@ barrel has height 3 feet

and radius 1 foot
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Clint Eastwood shoots a

Figure : “You've got to ask cylindrical barrel of
yourself one question: ‘Do | feel whiskey dead center
lucky?’ Well, do ya punk?” —

Clint Eastwood on Differential @ bullet does not leave
Equations barrel

@ barrel has height 3 feet
and radius 1 foot

@ he uses a .44 Magnum,
the most powerful
handgun in the world
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Clint Eastwood shoots a

Figure : “You've got to ask cylindrical barrel of
yourself one question: ‘Do | feel whiskey dead center
lucky?’ Well, do ya punk?” —

Clint Eastwood on Differential @ bullet does not leave
Equations barrel

@ barrel has height 3 feet
and radius 1 foot

@ he uses a .44 Magnum,
the most powerful
handgun in the world

@ how long until the barrel
is half-empty?

W.R. Casper Math 307 Lecture 5




Torricelli's Law
Holes in a Bucket A story problem

An Old West Example
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Vis volume of barrel, h is height of level above bullet hole
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Holes in a Bucket A story problem

An Old West Example

@ Vis volume of barrel, h is height of level above bullet hole
@ Barrel has cross sectional area of =
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Vis volume of barrel, h is height of level above bullet hole
@ Barrel has cross sectional area of =
e dV/dt = ndh dt
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Vis volume of barrel, h is height of level above bullet hole

@ Barrel has cross sectional area of 7

e dV/dt=ndl dt

@ Bullet makes a cylindrical hole with diameter 10.9
millimeters
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Holes in a Bucket A story problem

An Old West Example

@ Vis volume of barrel, h is height of level above bullet hole

@ Barrel has cross sectional area of 7

e dV/dt=ndl dt

@ Bullet makes a cylindrical hole with diameter 10.9
millimeters

@ Cross-sectional area of 0.297 - 10~ 4x
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Vis volume of barrel, h is height of level above bullet hole

@ Barrel has cross sectional area of 7

e dV/dt=ndl dt

@ Bullet makes a cylindrical hole with diameter 10.9
millimeters

@ Cross-sectional area of 0.297 - 10~ 4x
@ dV/dt= —0.297 - 10~*x+/2gh
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Vis volume of barrel, h is height of level above bullet hole

@ Barrel has cross sectional area of 7

e dV/dt=ndl dt

@ Bullet makes a cylindrical hole with diameter 10.9
millimeters

@ Cross-sectional area of 0.297 - 10~4x

@ dV/dt = —0.297 - 10~*r,/2gh

@ Thus

dh

T = —0.297- 10~%r+/2gh
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Separable equation!
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Separable equation!
1 dh

Thdt = —0.297 - 10~*x+/2g
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Separable equation!
A dh_
Vhat
2vh=—(0.297 -107*\/29)t + C

—0.297 - 10~ *x+/2g
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Separable equation!
A dh_
Vhat
2vh=—(0.297 -107*\/29)t + C

—0.297 - 10~ *x+/2g

h=(C—(0.148-107%,/29)t)?
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Separable equation!
A dh_
Vhat
2vh=—(0.297 -107*\/29)t + C

—0.297 - 10~ *x+/2g

h=(C—(0.148-107%,/29)t)?

@ Att=0,h=2,so0C=2and
h=(2—(0.148-107%,/29)t)?
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Torricelli's Law
Holes in a Bucket A story problem

An Old West Example

@ Separable equation!
A dh_
Vhat
2vh=—(0.297 -107*\/29)t + C

—0.297 - 10~ *x+/2g

h=(C—(0.148-107%,/29)t)?

@ Att=0,h=2,so0C=2and
h=(2—(0.148-107%,/29)t)?

@ Set h = 0 and solve for t:




Stoke’s Law
A story problem
Pebble falling in Syrup

Outline

Q Pebble falling in Syrup
@ Stoke’s Law
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Pebble falling in Syrup

Stokes’s Law

Figure : Falling pebble feels
three forces

W.R. Casper

Stoke’s Law
A story problem
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Stokes’s Law

Pebble falling in Syrup

Stoke’s Law
A story problem

Figure : Falling pebble feels

three forces

W.R. Casper

@ Stokes law governs the
drag felt by an object
falling through a viscous
fluid
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Stokes’s Law

Pebble falling in Syrup

Stoke’s Law
A story problem

Figure : Falling pebble feels

three forces

W.R. Casper

@ Stokes law governs the
drag felt by an object
falling through a viscous
fluid

@ Spherical pebble of

radius r, mass m, and
velocity v
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Pebble falling in Syrup

Stokes’s Law

Stoke’s Law
A story problem

Figure : Falling pebble feels
three forces

W.R. Casper

@ Stokes law governs the
drag felt by an object
falling through a viscous
fluid

@ Spherical pebble of
radius r, mass m, and
velocity v

o Ball feels three forces:
buoyant force,
gravitational force,
viscous drag
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Stoke’s Law
A story problem

Pebble falling in Syrup

Stokes’s Law

@ buoyant force: B equals
Figure : Stokes was known for weight of fluid displaced
being super stoked about fluid
mechanics
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Stoke’s Law
A story problem

Pebble falling in Syrup

Stokes’s Law

@ buoyant force: B equals

Figure : Stokes was known fpr weight of fluid displaced
being super stoked about fluid e viscous drag:
mechanics
R = —6murv by Stokes
law
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Stoke’s Law
A story problem

Pebble falling in Syrup

Stokes’s Law

@ buoyant force: B equals

Figure : Stokes was known fpr weight of fluid displaced
bme;r;ﬁ::igsr stoked about fluid e viscous drag:
R = —6murv by Stokes

law

@ here u quantifies how
viscous the fluid is
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Stoke’s Law
A story problem

Pebble falling in Syrup

Stokes’s Law

@ buoyant force: B equals

Figure : Stokes was known for weight of fluid displaced
being super stoked about fluid

. @ viscous drag:
mechanics

R = —6murv by Stokes
law

@ here u quantifies how
viscous the fluid is

@ . is bigger for molasses
than for water
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Stoke’s Law
A story problem

Pebble falling in Syrup

Stokes’s Law

@ buoyant force: B equals

Figure : Stokes was known fpr weight of fluid displaced
being super stoked about fluid e viscous drag:
mechanics

R = —6murv by Stokes
law

@ here u quantifies how
viscous the fluid is

@ . is bigger for molasses
than for water

@ gravitational force: —mg
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Stoke’s Law
A story problem

Pebble falling in Syrup

Stokes’s Law

@ buoyant force: B equals

Figure : Stokes was known for weight of fluid displaced
being super stoked about fluid e viscous drag:
mechanics

R = —6murv by Stokes
law

@ here u quantifies how
viscous the fluid is

@ . is bigger for molasses
than for water

@ gravitational force: —mg
@ How fast does a pebble
sink?
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Stoke’s Law
A story problem
Pebble falling in Syrup

Outline

Q Pebble falling in Syrup

@ A story problem
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ We drop a spherical
Figure : The Beatles did math in a submarine into the ocean
yellow submarine...maybe
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ We drop a spherical
Figure : The Beatles did math in a submarine into the ocean

llow marine...m -
yellow submarine...maybe @ assume water density is

approximately constant
with respect to depth
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ We drop a spherical
Figure : The Beatles did math in a submarine into the ocean

llow marine...m -
yellow submarine...maybe @ assume water density is

approximately constant
with respect to depth

@ buoyant force is then
B = 3nripg
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ We drop a spherical
Figure : The Beatles did math in a submarine into the ocean

ellow submarine...maybe T
y y @ assume water density is

approximately constant
with respect to depth

@ buoyant force is then
B = 3nripg

@ by Newtons law:

_ av
F=m%
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ We drop a spherical
Figure : The Beatles did math in a submarine into the ocean

llow marine...m -
yellow submarine...maybe @ assume water density is

approximately constant
with respect to depth

@ buoyant force is then
B = 3nripg
@ by Newtons law:

_ av
F=m%

@ total force

F=-mg+B+R
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ velocity therefore satisfies the differential equation

grav. force viscous drag

av = 4 4 ——

mE: -mg + 57” pg — 6murv
N——

buoyant force
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ velocity therefore satisfies the differential equation

grav. force viscous drag

av = 4 4 ——

mE: -mg + 57” pg — 6murv
N——

buoyant force

@ Linear equation! (alt. it's separable)
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ velocity therefore satisfies the differential equation

grav. force viscous drag

av = 4 4 ——

mE: -mg + 57” pg — 6murv
N——

buoyant force

@ Linear equation! (alt. it's separable)
@ Find an integrating factor and solve. Should get:

4.3
- —mg + &xr
v = Cexp( 6n7;urt> + g;rz;r P9
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

Figure : Sea monsters love
differential equations
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ as we fall, we gather
Figure : Sea monsters love more speed!
differential equations
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ as we fall, we gather
Figure : Sea monsters love more speed!
differential equations o what is the terminal
1 velocity of the submarine
(maximum speed it can
fall)?
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Pebble falling in Syrup

Stoke’s Law
A story problem

3000 Leagues under the Sea

Figure : Sea monsters love
differential equations

f STOR}' fic

Masterpieces o Sdoc-Ficton
DAWN OF FLAME

W.R. Casper

@ as we fall, we gather
more speed!

@ what is the terminal
velocity of the submarine
(maximum speed it can
fall)?

@ assume not attacked by
a sea monster
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Stoke’s Law
A story problem

Pebble falling in Syrup

3000 Leagues under the Sea

@ as we fall, we gather
Figure : Sea monsters love more speed!
differential equations

@ what is the terminal
velocity of the submarine

fSTORY c gl‘l?;;imum speed it can

Masterpoes of SconeFion
DAWN OF FLAME

@ assume not attacked by
a sea monster

@ take limitas t — oo

—mg + §7r3pg
6rur

Vierm =
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Stoke’s Law
A story problem
Pebble falling in Syrup

Summary!

What we did today:
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Pebble falling in Syrup

Summary!

What we did today:

@ We looked at some real-world situations that can be
modeled by differential equations

W.R. Casper Math 307 Lecture 5



Stoke’s Law
A story problem
Pebble falling in Syrup

Summary!

What we did today:

@ We looked at some real-world situations that can be
modeled by differential equations

W.R. Casper Math 307 Lecture 5
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A story problem
Pebble falling in Syrup

Summary!

What we did today:

@ We looked at some real-world situations that can be
modeled by differential equations

Plan for next time:
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Stoke’s Law
A story problem
Pebble falling in Syrup

Summary!

What we did today:

@ We looked at some real-world situations that can be
modeled by differential equations

Plan for next time:
@ Differences between linear and nonlinear equations
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