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@ Looked at 2nd-Order Hom. Lin. Eqgns. with Constant
Coefficients for the first time

@ Found out how to solve them in the case that the
characteristic polynomial had distinct roots

This time:
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Last time:

@ Looked at 2nd-Order Hom. Lin. Eqgns. with Constant
Coefficients for the first time

@ Found out how to solve them in the case that the
characteristic polynomial had distinct roots

This time:
@ Complex numbers

@ 2nd-Order Hom. Lin. Egns. with Constant Coefficients with
characteristic polynomials having complex roots
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Last time:

@ Looked at 2nd-Order Hom. Lin. Eqgns. with Constant
Coefficients for the first time

@ Found out how to solve them in the case that the
characteristic polynomial had distinct roots

This time:
@ Complex numbers

@ 2nd-Order Hom. Lin. Egns. with Constant Coefficients with
characteristic polynomials having complex roots
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Last time:

@ Looked at 2nd-Order Hom. Lin. Eqgns. with Constant
Coefficients for the first time

@ Found out how to solve them in the case that the
characteristic polynomial had distinct roots

This time:
@ Complex numbers

@ 2nd-Order Hom. Lin. Egns. with Constant Coefficients with
characteristic polynomials having complex roots

Next time:

@ 2nd-Order Hom. Lin. Egns. with Constant Coefficients with
characteristic polynomials having repeated roots
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Outline

e Complex Numbers
@ Complex Number Basics
@ Euler’s Definition

e Complex Roots of the Characteristic Polynomial
@ General solutions to 2nd Order Linear ODEs with Const.
Coeff
@ General Case
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Complex Numbers Complex Number Basics
Euler’s Definition

Outline

0 Complex Numbers
@ Complex Number Basics
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Complex Numbers Complex Number Basics
Euler’s Definition

What are imaginary numbers?

Calvin and Hobbes by Bill Watterson

WERE'S MWOTHER MATH OO, THATS A TRICK ORE,
PRORBLEM, Lc&w FERE WMVEML‘SECMuws




Complex Numbers Complex Number Basics
Euler’s Definition

What are imaginary numbers?

@ An imaginary number is any real number multiplied by v/ —1

Calvin and Hobbes by Bill Watterson

WERE'S MWOTHER MATH OO, THATS A TRICK ORE,
PRORBLEM, Lc&w FERE WMVEML‘SECMuws
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Complex Numbers

Complex Number Basics
Euler’s Definition

What are imaginary numbers?

@ An imaginary number is any real number multiplied by v/ —1

@ Usually denote this by i

Calvin and Hobbes

by Bill Watterson

WERE'S MUCTHER MATH o, THATS A TRICK] OREE,
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Complex Numbers Complex Number Basics
Euler’s Definition

What are imaginary numbers?

@ An imaginary number is any real number multiplied by v/ —1
@ Usually denote this by i
o examples: 13/, \2i, —4i, =i

Calvin and Hobbes by Bill Watterson

WERE'S MWOTHER MATH oM, THATS A TRICK! CHE,

PRORLEM L CANT FIGURE | | You HAIE 0 USk CALEULS
e, OT- Wi EHD IMASINARY MIMEERS
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Complex Numbers Complex Number Basics
Euler’s Definition

What are imaginary numbers?

@ An imaginary number is any real number multiplied by v/ —1
@ Usually denote this by i
o examples: 13/, \2i, —4i, =i

Figure : Imaginary numbers are very real to tigers

Calvin and Hobbes by Bill Watterson

WERE'S MWOTHER MATH oM, THATS A TRICK! CHE,

PRORLEM L CANT FIGURE | | You HAIE 0 USk CALEULS
e, OT- Wi EHD IMASINARY MIMEERS
FoR THIS .

W.R. Casper Math 307 Lecture 11



Complex Numbers Complex Number Basics
Euler’s Definition

What are complex numbers?




Complex Numbers Complex Number Basics
Euler’s Definition

What are complex numbers?

A complex number z is a number of the form

real part ~imaginary part
~= -/ .
z="a + b i

where a and b are any real numbers.
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Complex Numbers Complex Number Basics
Euler’s Definition

What are complex numbers?

A complex number z is a number of the form

real part ~imaginary part
~= -/ ]
z="a + b i

where a and b are any real numbers.

@ Any real number is a complex number also
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Complex Numbers Complex Number Basics
Euler’s Definition

What are complex numbers?

A complex number z is a number of the form

real part ~imaginary part
~= -/ ]
z="a + b i

where a and b are any real numbers.

@ Any real number is a complex number also
@ Any imaginary number is a complex number also
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Complex Numbers Complex Number Basics
Euler’s Definition

What are complex numbers?

A complex number z is a number of the form

real part ~imaginary part
~= -/ ]
z="a + b i

where a and b are any real numbers.

@ Any real number is a complex number also
@ Any imaginary number is a complex number also
® 2+ 3i, —V/7 — }iand 4 + 2xi are complex numbers too
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Addition and Subtraction:
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Addition and Subtraction:
@ To add complex things, just add real and imaginary parts.
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Addition and Subtraction:
@ To add complex things, just add real and imaginary parts.
@ For example

(2 +31) + (4 + 2ri) = 6 + (3 + 2n)i
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Addition and Subtraction:
@ To add complex things, just add real and imaginary parts.
@ For example

(2 +31) + (4 + 2ri) = 6 + (3 + 2n)i

@ Similar story for subtraction...

(2+3i)—(4+27i)=-2+(3—2n)i
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Multiplication:
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Multiplication:

@ To multiply complex things, we have to “foil", remembering
that i2 = —1
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Multiplication:

@ To multiply complex things, we have to “foil", remembering
that i2 = —1

@ For example
(2+438i)-(4+2ri)=2-4+2-21i+3i-4+3i-2ni
= 8 + 4wi + 12i + 67/?

=8+4ri+12i — 67
=(8—6m)+ (12 +4mn)i
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?
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Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Inverses:
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Inverses:

@ We calculate the inverse of a complex number z = a+ bi
by using the complex conjugate trick
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Inverses:

@ We calculate the inverse of a complex number z = a+ bi
by using the complex conjugate trick

@ Complex conjugate is z* = a— bi

W.R. Casper Math 307 Lecture 11



Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Inverses:

@ We calculate the inverse of a complex number z = a+ bi
by using the complex conjugate trick

@ Complex conjugate is z* = a— bi

1 1 1 (a-bi)
a+bi a+bi  a+bi (a-bi)

a—bi _a—-ib  a b .
(@a+bi)a_bi) @+b2 @+b2 2102
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Division:
@ We divide by multiplying by the inverse
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Division:
@ We divide by multiplying by the inverse
@ Alternatively we apply complex conjugate trick
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Complex Numbers Complex Number Basics
Euler’s Definition

Algebra with Complex numbers!

How do we add, subtract, multiply, and divide complex numbers
by other complex numbers?

Division:
@ We divide by multiplying by the inverse
@ Alternatively we apply complex conjugate trick
@ For example

4+2ri  A+2mi . A+2ni (2-3i)
2+3i 243 @ 2438 (2-3i)
(4+2ni)-(2—3i) 8+6r 4r—12,
= . =~ = + i
(2+3i)-(2-3i) 13 13
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Complex Numbers Complex Number Basics
Euler’s Definition

Try it Yourself!

Have a go at the following calculations:
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Complex Numbers Complex Number Basics
Euler’s Definition

Try it Yourself!

Have a go at the following calculations:

o
(—=3+2i)+(4—6i)="?
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Complex Numbers Complex Number Basics
Euler’s Definition

Try it Yourself!

Have a go at the following calculations:

o
(—=3+2i)+(4—6i)="?

B+i)x(@—i)="2
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Complex Numbers Complex Number Basics
Euler’s Definition

Try it Yourself!

Have a go at the following calculations:

°
(-3+2)+(4—-6i)="7
°
B+Nx2-0)="7
o 3
1+2/:?
3-7i
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Complex Numbers Complex Number Basics
Euler’s Definition

Outline

0 Complex Numbers

@ Euler’s Definition
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Complex Numbers Complex Number Basics
Euler’s Definition

Complex numbers as vectors

Figure : A complex number is
a vector in the plane

Increasing &

z=r(cos8+isind)
»

g, 6+2m
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Complex Numbers Complex Number Basics
Euler’s Definition

Complex numbers as vectors

@ We can “visualize" a

Figure : A complex number is complex number z = x + iy
a VeCtOF in the plane as a Vector

Increasing &

z=r(cos8+isind)
»

g, 6+2m
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Complex Numbers Complex Number Basics
Euler’s Definition

Complex numbers as vectors

@ We can “visualize" a

Figure : A complex number is complex number z = x + iy
a vector in the plane as a vector

@ The tip of the vector is put at
the point (x, y)

Increasing &

z=r(cos8+isind)
»

g, 6+2m
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Complex Numbers Complex Number Basics
Euler’s Definition

Complex numbers as vectors

@ We can “visualize" a

Figure : A complex number is complex number z = x + iy
a vector in the plane as a vector

@ The tip of the vector is put at
the point (x, y)
@ The base of the vector is
Z:r(cosaﬂsinﬁ) .
; put at the origin

g, 6+2m

Increasing &
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Complex Numbers Complex Number Basics
Euler’s Definition

Complex numbers as vectors

@ We can “visualize" a

Figure : A complex number is complex number z = x + iy
a vector in the plane as a vector

@ The tip of the vector is put at
the point (x, y)

{ncreasing & @ The base of the vector is
z:r(cosaﬂsinﬁ) P
. put at the origin
s @ Using polar coordinates, we
can write
x = rcos(f)
y = rsin(6)
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Complex Numbers Complex Number Basics
Euler’s Definition

Euler’s Definition

Definition
If 8 is a real number, then we define

' = cos(0) + isin(6).
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Complex Numbers Complex Number Basics
Euler’s Definition

Euler’s Definition

Definition
If 8 is a real number, then we define

' = cos(0) + isin(6).

This definition does not break anything.
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Complex Numbers Complex Number Basics
Euler’s Definition

Euler’s Definition

Definition
If 8 is a real number, then we define

' = cos(0) + isin(6).

This definition does not break anything.

@ Q: What do we mean by this?
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Complex Numbers Complex Number Basics
Euler’s Definition

Euler’s Definition

Definition
If 8 is a real number, then we define

' = cos(0) + isin(6).

This definition does not break anything.

@ Q: What do we mean by this?
o A: efei® — gil0+9)
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Complex Numbers Complex Number Basics
Euler’s Definition

Euler’s Definition

Definition
If 8 is a real number, then we define

' = cos(0) + isin(6).

This definition does not break anything.

@ Q: What do we mean by this?
o A: elfelt = gil0+9)
@ Also, this makes sense in a power-series sort of way:

5 @ :z((g( )9! *Z((21,3f1; i cos(6)-+sin(6)i — &
k=0 k=0 k=0
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Complex Numbers Complex Number Basics
Euler’s Definition

Complex numbers as vectors

Figure : What does
multiplication do to vectors?

Iw
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Complex Numbers Complex Number Basics
Euler’s Definition

Complex numbers as vectors

@ Take a complex number
Figure : What does X+ iy
multiplication do to vectors?

Iw

¥
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Complex Numbers Complex Number Basics
Euler’s Definition

Complex numbers as vectors

@ Take a complex number
Figure : What does X+ iy

L o
multiplication do to vectors” e Convert (x, y) to polar:

zw 0 = tan~"(y/x)

¥
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Complex Numbers Complex Number Basics
Euler’s Definition

Complex numbers as vectors

@ Take a complex number
Figure : What does X+ iy

L o
multiplication do to vectors” e Convert (x, y) to polar:

zw 6 = tan~1(y/x)
@ Then x + iy = re’ also!

¥

W.R. Casper Math 307 Lecture 11



Complex Numbers Complex Number Basics
Euler’s Definition

Complex numbers as vectors

@ Take a complex number
Figure : What does X+ iy

L o
multiplication do to vectors” e Convert (x, y) to polar:

zw 0 =tan"(y/x)
@ Then x + iy = re’ also!

o lfz=neSand w = e
then

ZW = Iph e’(s+t)

* Angles add! (see figure)
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Complex Numbers Complex Number Basics
Euler’s Definition

A few more definitions

Figure : SMBC

HEY THERE., HOW ABOUT WE &0 To THE
RESTROOM, LOCK THE Door, AND T
BLOW YOUR MIND,

|/ thiooaAdA,
1 But.. oammIT




Complex Numbers Complex Number Basics
Euler’s Definition

A few more definitions

@ Let z = re’” be a complex
Figure : SMBC number

HEY THERE., HOW ABOUT WE &0 To THE
RESTROOM, LOCK THE Door, AND T
BLOW YOUR MIND,

|/ thooansd,
1 But.. oammIT
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Complex Numbers Complex Number Basics
Euler’s Definition

A few more definitions

@ Let z = re’” be a complex
Figure : SMBC number
HEN THERE. Hou. AOUT WE <0 o THE @ 0 is called the argument of z

RESTROOM, LOCK THE DOOR, AND T
BLOW YoUR MIND,

8]

|/ tohooonna,

3 sot.. cammir

) BUT...
AN .
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Complex Numbers Complex Number Basics
Euler’s Definition

A few more definitions

@ Let z = re’” be a complex
Figure : SMBC number

@ 0 is called the argument of z

HEY THERE. HOW ABOUT WE -0 To THE
RESTROOM, LOCK THE DOoR, AND T
BLOW YoUR MIND,

@ ris called the modulus of z
and is sometimes denoted
as |z|

|/ thooansd,
3 sot.. cammir
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Complex Numbers Complex Number Basics
Euler’s Definition

A few more definitions

@ Let z = re’” be a complex
Figure : SMBC number

@ 0 is called the argument of z

HEY THERE. HOW ABOUT WE -0 To THE
RESTROOM, LOCK THE DOoR, AND T
BLOW YoUR MIND,

8]

@ r is called the modulus of z
and is sometimes denoted
as |z|

@ easy exercise: show
r=z.z*

|/ ihooonna,

3 sot.. cammir

) BUT...
PAOMAAA .
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Complex Numbers Complex Number Basics
Euler’s Definition

A few more definitions

@ Let z = re’” be a complex
Figure : SMBC number

@ 0 is called the argument of z

@ ris called the modulus of z
and is sometimes denoted

HEY THERE. HOW ABOUT WE -0 To THE
RESTROOM, LOCK THE DOoR, AND T
BLOW YoUR MIND,

as |z|
@ easy exercise: show
rr=z z*
) @ Q: why do we care about
G complex numbers?
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Complex Numbers Complex Number Basics
Euler’s Definition

A few more definitions

@ Let z = re’” be a complex
Figure : SMBC number

@ 0 is called the argument of z

HEY THERE. HOW ABOUT WE -0 To THE
RESTROOM, LOCK THE DOoR, AND T
BLOW YoUR MIND,

@ ris called the modulus of z
and is sometimes denoted

as |z|
@ easy exercise: show
rr=z z*
) @ Q: why do we care about
G complex numbers?

@ A:simple! They give us
more roots of polynomials!
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Outline

e Complex Roots of the Characteristic Polynomial
@ General solutions to 2nd Order Linear ODEs with Const.
Coeff
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

Find the general solution of the second-order homogeneous
linear ODE
y'=2y'+2y=0
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

Find the general solution of the second-order homogeneous
linear ODE
y'=2y'+2y=0

@ How do we find the general solution?
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

Find the general solution of the second-order homogeneous
linear ODE
y'=2y'+2y=0

@ How do we find the general solution?

@ First we bluff and say we already know our solution:
y = e’
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

Find the general solution of the second-order homogeneous
linear ODE
y'=2y'+2y=0

@ How do we find the general solution?

@ First we bluff and say we already know our solution:
y = e’

@ This means y’ = re" and y" = re"
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ Then since y is a solution




General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ Then since y is a solution

O:y//_zy/+2y
=rle" —2re" + 2¢"
=(r2-2r+2)e"
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ Then since y is a solution

O:y//_zy/+2y
=rle" —2re" + 2¢"
=(r2-2r+2)e"

@ Thereforer? —2r+2=0
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ Then since y is a solution

0=y"—2y'+2y
2ert _ 2rert + 26”
=(r2-2r+2)e"

=r

@ Therefore r> —2r +2 =0
@ Roots of the polynomial r2 —2r + 2 are 1+
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ Then since y is a solution

0=y"—2y'+2y
2ert _ 2rert + 26”
=(r2-2r+2)e"

=r

@ Therefore r> —2r+2=0
@ Roots of the polynomial r2 —2r + 2 are 1+
@ This means y = el"*)t and y = (=11 are both solutions!
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ Then since y is a solution

0=y"—2y'+2y
2ert _ 2rert + 26”
=(r2-2r+2)e"

=r

@ Therefore r> —2r+2=0

@ Roots of the polynomial r2 —2r + 2 are 1+

@ This means y = el"*)t and y = (=11 are both solutions!
@ Wait a minute, these are complex-valued functions!
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example




General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ We only want real-valued solutions. So look at the general
solution (obtained by superposition principal):

y = Ae(1+i)i+ Be(1—i)1‘
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ We only want real-valued solutions. So look at the general
solution (obtained by superposition principal):

y = Ae(1+i)1‘ + Be(1—i)1‘
@ Using Euler’s formula

y = Ael cos(t) + iAe! sin(t) + Be! cos(t) — iBe' sin(t)
= (A+ B)e'cos(t) + i(A — B)e'sin(t)
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ We only want real-valued solutions. So look at the general
solution (obtained by superposition principal):

y = Ae(1+i)i+ Be(1—i)1‘

@ Using Euler’s formula

y = Ael cos(t) + iAe! sin(t) + Be! cos(t) — iBe' sin(t)
= (A+ B)e'cos(t) + i(A — B)e'sin(t)

@ Here A and B should also be allowed to be complex and
must be chosen to make y real
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example




General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ SetC=A+Band D=i(A—-B)




General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ SetC=A+Band D=i(A—-B)

@ Then C and D are arbitrary constants and the general
solution is
y = Ce' cos(t) + De'sin(t)
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Our First Example

@ SetC=A+Band D=i(A—-B)

@ Then C and D are arbitrary constants and the general
solution is
y = Ce' cos(t) + De'sin(t)

@ Note: C and D must be real to make y real...
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General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Outline

e Complex Roots of the Characteristic Polynomial

@ General Case
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General solutions to 2nd Order Linear ODEs with Const. Coeff
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General Case

@ Consider the equation

y'+ay'+by=0
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General Case

@ Consider the equation

y'+ay +by=0

@ The corresponding characteristic polynomial will be
rP+ar+b
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General Case

@ Consider the equation

y'+ay'+by=0

@ The corresponding characteristic polynomial will be
rP+ar+b

@ Roots come in conjugate pairs

W.R. Casper Math 307 Lecture 11



General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

General Case

@ Consider the equation

y'+ay +by=0

@ The corresponding characteristic polynomial will be
rP+ar+b

@ Roots come in conjugate pairs
@ Suppose r? + ar + b has the root o + j3i
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General Case

@ Consider the equation

y'+ay +by=0

@ The corresponding characteristic polynomial will be
rP+ar+b

@ Roots come in conjugate pairs
@ Suppose r? + ar + b has the root o + j3i
@ Then it will also have the root a — 3i

W.R. Casper Math 307 Lecture 11



General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

General Case

@ Consider the equation

y'+ay +by=0

@ The corresponding characteristic polynomial will be
rP+ar+b

@ Roots come in conjugate pairs
@ Suppose r? + ar + b has the root o + j3i
@ Then it will also have the root a — 3i

@ Therefore the general (complex-valued) solution will look
like
y = Ae(aJri/B)t + Be(a*"ﬁ)t
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General Case

@ Euler’s formula will then give

(A + B)e“ cos(ft) + (A — B)e® sin(St)i

y
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General Case

@ Euler’s formula will then give

y = (A+ B)e* cos(Bt) + (A — B)e®!sin(St)i

@ Setting C = A+ Band D = (A— B)i, the (real) general
solution is

y = Ce®!cos(Bt) + De! sin(t)
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General Case

@ Euler’s formula will then give

y = (A+ B)e* cos(Bt) + (A — B)e®!sin(St)i

@ Setting C = A+ Band D = (A— B)i, the (real) general
solution is

y = Ce®!cos(Bt) + De! sin(t)

@ Again C and D are completely arbitrary, but must be
real-valued for y to be real.
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Try it Yourself!

Find the general solutions:
o

y'+2y' -8y =0
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Try it Yourself!

Find the general solutions:
o
y//+2y,_8y:0

y"+6y +13y =0
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Try it Yourself!

Find the general solutions:

o

y'+2y' -8y=0
o

y'+6y +13y=0
o

y"+2y'+1.25y =0
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Review!

Today:
@ Complex numbers and Euler’s definition

@ What happens when the characteristic polynomial has
complex roots

W.R. Casper Math 307 Lecture 11



General solutions to 2nd Order Linear ODEs with Const. Coeff
Complex Roots of the Characteristic Polynomial General Case

Review!

Today:
@ Complex numbers and Euler’s definition

@ What happens when the characteristic polynomial has
complex roots

Next time:
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Review!

Today:
@ Complex numbers and Euler’s definition

@ What happens when the characteristic polynomial has
complex roots

Next time:

@ What happens when the characteristic polynomial has
repeated roots
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