Math 307 Lecture 12 Second-Order Homogeneous Linear ODEs with Constant Coefficients III

W.R. Casper

Department of Mathematics University of Washington

April 30, 2014

W.R. Casper Math 307 Lecture 12

ヘロト ヘアト ヘビト ヘビト

Today!

Last time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having complex roots
- This time:
 - Complex numbers
 - 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロト ヘアト ヘヨト ヘ

Today!

Last time:

Complex numbers

• 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having complex roots

This time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロト ヘアト ヘヨト ヘ

-∃=->

Today!

Last time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having complex roots

This time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

イロト イポト イヨト イヨト

Today!

Last time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having complex roots

This time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

イロト イポト イヨト イヨト

Today!

Last time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having complex roots

This time:

Complex numbers

• 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

イロト イポト イヨト イヨト

Today!

Last time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having complex roots

This time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロト ヘアト ヘビト ヘビト

Today!

Last time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having complex roots

This time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロト ヘアト ヘビト ヘビト

Today!

Last time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having complex roots

This time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロト ヘアト ヘビト ヘビト

Today!

Last time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having complex roots

This time:

- Complex numbers
- 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Case of Repeated Roots

- Review of what we know
- Repeated Roots: Some Examples
- Repeated Roots: The General Case
- Try it Yourself!

- An Example
- Try it Yourself

< 🗇 > < 🖻 > .

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロト イポト イヨト イヨト

Outline

The Case of Repeated Roots

- Review of what we know
- Repeated Roots: Some Examples
- Repeated Roots: The General Case
- Try it Yourself!
- 2 General Reduction of Order
 - An Example
 - Try it Yourself

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

くロト (過) (目) (日)

Review: What do we know?

Question

Do we know how to solve 2nd-order linear homogeneous ODEs with constant coefficients yet?

In other words, do we know the general solution to

$$ay^{\prime\prime}+by^{\prime}+cy=0,$$

(with a > 0) for any choice of a, b, c?

- Almost!
- We try a solution of the form $= e^{rt}$
- For this to work, *r* must be a root of the *characteristic* equation

$$ar^2 + br + c = 0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘアト ヘビト ヘビト

Review: What do we know?

Question

Do we know how to solve 2nd-order linear homogeneous ODEs with constant coefficients yet?

In other words, do we know the general solution to

$$ay^{\prime\prime}+by^{\prime}+cy=0,$$

(with a > 0) for any choice of a, b, c?

- Almost!
- We try a solution of the form $= e^{rt}$
- For this to work, *r* must be a root of the *characteristic* equation

$$ar^2 + br + c = 0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト 人間 ト ヘヨト ヘヨト

Review: What do we know?

Question

Do we know how to solve 2nd-order linear homogeneous ODEs with constant coefficients yet?

In other words, do we know the general solution to

$$ay^{\prime\prime}+by^{\prime}+cy=0,$$

(with a > 0) for any choice of a, b, c?

- Almost!
- We try a solution of the form $= e^{rt}$

• For this to work, *r* must be a root of the *characteristic* equation

$$ar^2 + br + c = 0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

くロト (過) (目) (日)

Review: What do we know?

Question

Do we know how to solve 2nd-order linear homogeneous ODEs with constant coefficients yet?

In other words, do we know the general solution to

$$ay''+by'+cy=0,$$

(with a > 0) for any choice of a, b, c?

- Almost!
- We try a solution of the form $= e^{rt}$
- For this to work, *r* must be a root of the *characteristic* equation

$$ar^2 + br + c = 0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロト イポト イヨト イヨト

Review: What do we know?

Question

Do we know how to solve 2nd-order linear homogeneous ODEs with constant coefficients yet?

In other words, do we know the general solution to

$$ay''+by'+cy=0,$$

(with a > 0) for any choice of a, b, c?

- Almost!
- We try a solution of the form $= e^{rt}$
- For this to work, *r* must be a root of the *characteristic* equation

$$ar^2 + br + c = 0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘアト ヘヨト ヘ

Review: If the roots are distinct and real...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If *r*₁, *r*₂ are *distinct* and *real*, then we have two solutions right away!
- Namely $y = e^{r_1 t}$ and $y = e^{r_2 t}$ are solutions
- By the *superposition principal*, we actually have a two-parameter family of solutions:

$$y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ コ ト ・ 四 ト ・ 回 ト ・

Review: If the roots are distinct and real...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If *r*₁, *r*₂ are *distinct* and *real*, then we have two solutions right away!
- Namely $y = e^{r_1 t}$ and $y = e^{r_2 t}$ are solutions
- By the *superposition principal*, we actually have a two-parameter family of solutions:

$$y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘヨト ヘヨト ヘ

Review: If the roots are distinct and real...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If *r*₁, *r*₂ are *distinct* and *real*, then we have two solutions right away!
- Namely $y = e^{r_1 t}$ and $y = e^{r_2 t}$ are solutions
- By the *superposition principal*, we actually have a two-parameter family of solutions:

$$y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘヨト ヘヨト ヘ

Review: If the roots are distinct and real...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If *r*₁, *r*₂ are *distinct* and *real*, then we have two solutions right away!
- Namely $y = e^{r_1 t}$ and $y = e^{r_2 t}$ are solutions
- By the *superposition principal*, we actually have a two-parameter family of solutions:

$$y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Review: If the roots are distinct and real...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If *r*₁, *r*₂ are *distinct* and *real*, then we have two solutions right away!
- Namely $y = e^{r_1 t}$ and $y = e^{r_2 t}$ are solutions
- By the *superposition principal*, we actually have a two-parameter family of solutions:

$$y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘヨト ヘヨト

Review: If the roots are distinct and real...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If *r*₁, *r*₂ are *distinct* and *real*, then we have two solutions right away!
- Namely $y = e^{r_1 t}$ and $y = e^{r_2 t}$ are solutions
- By the *superposition principal*, we actually have a two-parameter family of solutions:

$$y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロト イポト イヨト イヨト

Review: If the roots are complex-valued...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If r₁ is complex, then r₂ will be complex (and vise versa)
- They will be *conjugate* to each other:

$$r_1 = \alpha + i\beta, \quad r_2 = \alpha - i\beta$$

$$y = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロト イポト イヨト イヨト

Review: If the roots are complex-valued...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If *r*₁ is complex, then *r*₂ will be complex (and vise versa)
- They will be *conjugate* to each other:

$$r_1 = \alpha + i\beta, \quad r_2 = \alpha - i\beta$$

$$y = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘ戸ト ヘヨト ヘヨト

Review: If the roots are complex-valued...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If *r*₁ is complex, then *r*₂ will be complex (and vise versa)
- They will be *conjugate* to each other:

$$r_1 = \alpha + i\beta, \quad r_2 = \alpha - i\beta$$

$$y = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘアト ヘビト ヘ

Review: If the roots are complex-valued...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If *r*₁ is complex, then *r*₂ will be complex (and vise versa)
- They will be *conjugate* to each other:

$$r_1 = \alpha + i\beta, \quad r_2 = \alpha - i\beta$$

$$y = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘアト ヘヨト ヘ

Review: If the roots are complex-valued...

- Suppose the two roots of the characteristic equation are r₁ and r₂
- If *r*₁ is complex, then *r*₂ will be complex (and vise versa)
- They will be *conjugate* to each other:

$$r_1 = \alpha + i\beta, \quad r_2 = \alpha - i\beta$$

$$y = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロト イポト イヨト イヨト

Outline

The Case of Repeated Roots

- Review of what we know
- Repeated Roots: Some Examples
- Repeated Roots: The General Case
- Try it Yourself!
- 2 General Reduction of Order
 - An Example
 - Try it Yourself

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

The case of Repeated Roots

Figure : This guy is stumped about repeated roots. How will he ever pass Math 307? We'd better help him out.

- Suppose the characteristic gave us the same (real) root twice
- e.g. $r_1 = r_2$
- We have one solution: $y = e^{r_1 t}$.
- But *y* = *Ce^{r₁t* can't be the general solution (why?)}

ヘロト ヘアト ヘビト ヘビ

- There must be another solution out there...
- How can we find it?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

The case of Repeated Roots

Figure : This guy is stumped about repeated roots. How will he ever pass Math 307? We'd better help him out.

- Suppose the characteristic gave us the same (real) root twice
- e.g. $r_1 = r_2$
- We have one solution: $y = e^{r_1 t}$.
- But *y* = *Ce^{r₁t* can't be the general solution (why?)}

・ロト ・ 同ト ・ ヨト ・ ヨト

- There must be another solution out there...
- How can we find it?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

The case of Repeated Roots

Figure : This guy is stumped about repeated roots. How will he ever pass Math 307? We'd better help him out.

- Suppose the characteristic gave us the same (real) root twice
- e.g. *r*₁ = *r*₂
- We have one solution: $y = e^{r_1 t}$.
- But *y* = *Ce^{r₁t* can't be the general solution (why?)}

・ロト ・ 同ト ・ ヨト ・ ヨト

- There must be another solution out there...
- How can we find it?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

The case of Repeated Roots

Figure : This guy is stumped about repeated roots. How will he ever pass Math 307? We'd better help him out.

- Suppose the characteristic gave us the same (real) root twice
- e.g. *r*₁ = *r*₂
- We have one solution: $y = e^{r_1 t}$.
- But $y = Ce^{r_1 t}$ can't be the general solution (why?)

・ コ ト ・ 四 ト ・ 回 ト ・

- There must be another solution out there...
- How can we find it?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

The case of Repeated Roots

Figure : This guy is stumped about repeated roots. How will he ever pass Math 307? We'd better help him out.

- Suppose the characteristic gave us the same (real) root twice
- e.g. *r*₁ = *r*₂
- We have one solution: $y = e^{r_1 t}$.
- But $y = Ce^{r_1 t}$ can't be the general solution (why?)

ヘロト ヘヨト ヘヨト ヘ

- There must be another solution out there...
- How can we find it?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

The case of Repeated Roots

Figure : This guy is stumped about repeated roots. How will he ever pass Math 307? We'd better help him out.

- Suppose the characteristic gave us the same (real) root twice
- e.g. *r*₁ = *r*₂
- We have one solution: $y = e^{r_1 t}$.
- But $y = Ce^{r_1 t}$ can't be the general solution (why?)

・ロト ・ 日 ・ ・ 田 ・

- There must be another solution out there...
- How can we find it?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

The case of Repeated Roots

Figure : This guy is stumped about repeated roots. How will he ever pass Math 307? We'd better help him out.

- Suppose the characteristic gave us the same (real) root twice
- e.g. *r*₁ = *r*₂
- We have one solution: $y = e^{r_1 t}$.
- But $y = Ce^{r_1 t}$ can't be the general solution (why?)

・ロト ・ 日 ・ ・ 田 ・

- There must be another solution out there...
- How can we find it?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A Motivating Example!

Example

Find the general solution to the ODE

 $y^{\prime\prime}-2y^{\prime}+y=0$

- What's the characteristic equation?
- $r^2 2r + 1 = 0$
- What are the roots of the characteristic equation?
- If we factor, we get $(r-1)^2 = 0$, so the roots are 1 and 1
- So we have one solution: $y = e^t$
- Where do we go from here?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A Motivating Example!

Example

$$y''-2y'+y=0$$

- What's the characteristic equation?
- $r^2 2r + 1 = 0$
- What are the roots of the characteristic equation?
- If we factor, we get $(r 1)^2 = 0$, so the roots are 1 and 1
- So we have one solution: $y = e^t$
- Where do we go from here?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロン 不良 とくほう 不良 とうほ

A Motivating Example!

Example

Find the general solution to the ODE

$$y''-2y'+y=0$$

- What's the characteristic equation?
- $r^2 2r + 1 = 0$

• What are the roots of the characteristic equation?

- If we factor, we get $(r-1)^2 = 0$, so the roots are 1 and 1
- So we have one solution: $y = e^t$
- Where do we go from here?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A Motivating Example!

Example

$$y''-2y'+y=0$$

- What's the characteristic equation?
- $r^2 2r + 1 = 0$
- What are the roots of the characteristic equation?
- If we factor, we get $(r 1)^2 = 0$, so the roots are 1 and 1
- So we have one solution: $y = e^t$
- Where do we go from here?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 理 ト ・ ヨ ト ・

A Motivating Example!

Example

$$y''-2y'+y=0$$

- What's the characteristic equation?
- $r^2 2r + 1 = 0$
- What are the roots of the characteristic equation?
- If we factor, we get $(r-1)^2 = 0$, so the roots are 1 and 1
- So we have one solution: $y = e^t$
- Where do we go from here?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 理 ト ・ ヨ ト ・

A Motivating Example!

Example

$$y''-2y'+y=0$$

- What's the characteristic equation?
- $r^2 2r + 1 = 0$
- What are the roots of the characteristic equation?
- If we factor, we get $(r-1)^2 = 0$, so the roots are 1 and 1
- So we have one solution: $y = e^t$
- Where do we go from here?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロン ヘアン ヘビン ヘビン

A Motivating Example!

Example

$$y''-2y'+y=0$$

- What's the characteristic equation?
- $r^2 2r + 1 = 0$
- What are the roots of the characteristic equation?
- If we factor, we get $(r-1)^2 = 0$, so the roots are 1 and 1
- So we have one solution: $y = e^t$
- Where do we go from here?

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A Motivating Example!

- Great idea! Try $y = v(t)e^t$
- Then $y' = v'(t)e^t + v(t)e^t$
- and also $y'' = v''(t)e^t + 2v'(t)e^t + v(t)e^t$
- If y is a solution, then

$$0 = y'' - 2y' + y$$

= $v''(t)e^{t} + 2v'(t)e^{t} + v(t)e^{t} - 2(v'(t)e^{t} + v(t)e^{t}) + v(t)e^{t}$
= $v''(t)e^{t}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A Motivating Example!

• Great idea! Try $y = v(t)e^{t}$

- Then $y' = v'(t)e^t + v(t)e^t$
- and also $y'' = v''(t)e^t + 2v'(t)e^t + v(t)e^t$
- If y is a solution, then

$$0 = y'' - 2y' + y$$

= $v''(t)e^{t} + 2v'(t)e^{t} + v(t)e^{t} - 2(v'(t)e^{t} + v(t)e^{t}) + v(t)e^{t}$
= $v''(t)e^{t}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A Motivating Example!

- Great idea! Try $y = v(t)e^t$
- Then $y' = v'(t)e^{t} + v(t)e^{t}$
- and also $y'' = v''(t)e^t + 2v'(t)e^t + v(t)e^t$
- If y is a solution, then

$$0 = y'' - 2y' + y$$

= $v''(t)e^{t} + 2v'(t)e^{t} + v(t)e^{t} - 2(v'(t)e^{t} + v(t)e^{t}) + v(t)e^{t}$
= $v''(t)e^{t}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

<ロ> (四) (四) (三) (三) (三)

A Motivating Example!

- Great idea! Try $y = v(t)e^{t}$
- Then $y' = v'(t)e^{t} + v(t)e^{t}$
- and also $y'' = v''(t)e^t + 2v'(t)e^t + v(t)e^t$
- If y is a solution, then

$$0 = y'' - 2y' + y$$

= $v''(t)e^{t} + 2v'(t)e^{t} + v(t)e^{t} - 2(v'(t)e^{t} + v(t)e^{t}) + v(t)e^{t}$
= $v''(t)e^{t}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト 人間 とくほとく ほとう

3

A Motivating Example!

- Great idea! Try $y = v(t)e^{t}$
- Then $y' = v'(t)e^{t} + v(t)e^{t}$
- and also $y'' = v''(t)e^t + 2v'(t)e^t + v(t)e^t$
- If y is a solution, then

$$0 = y'' - 2y' + y$$

= $v''(t)e^{t} + 2v'(t)e^{t} + v(t)e^{t} - 2(v'(t)e^{t} + v(t)e^{t}) + v(t)e^{t}$
= $v''(t)e^{t}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロン ヘアン ヘビン ヘビン

1

A Motivating Example!

- Great idea! Try $y = v(t)e^{t}$
- Then $y' = v'(t)e^{t} + v(t)e^{t}$
- and also $y'' = v''(t)e^t + 2v'(t)e^t + v(t)e^t$
- If y is a solution, then

$$0 = y'' - 2y' + y$$

= $v''(t)e^{t} + 2v'(t)e^{t} + v(t)e^{t} - 2(v'(t)e^{t} + v(t)e^{t}) + v(t)e^{t}$
= $v''(t)e^{t}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト 人間 とくほとく ほとう

- If v''(t) = 0, what is *v*?
- v(t) = At + B for some constants A, B
- We've got a new solution!

$$y = (At + B)e^t$$

- In fact, this is a two-parameter family of solutions
- It includes the old solution $y = e^t$
- As a matter of fact, it's the general solution!
- VICTORY IS OURS!

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト 人間 とくほとく ほとう

A Motivating Example!

• If *v*''(*t*) = 0, what is *v*?

- v(t) = At + B for some constants A, B
- We've got a new solution!

$$y = (At + B)e^t$$

- In fact, this is a two-parameter family of solutions
- It includes the old solution $y = e^t$
- As a matter of fact, it's the general solution!
- VICTORY IS OURS!

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト 人間 とくほとくほとう

- If v''(t) = 0, what is v?
- v(t) = At + B for some constants A, B
- We've got a new solution!

$$y = (At + B)e^t$$

- In fact, this is a two-parameter family of solutions
- It includes the old solution $y = e^t$
- As a matter of fact, it's the general solution!
- VICTORY IS OURS!

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 理 ト ・ ヨ ト ・

- If v''(t) = 0, what is v?
- v(t) = At + B for some constants A, B
- We've got a new solution!

$$y = (At + B)e^t$$

- In fact, this is a two-parameter family of solutions
- It includes the old solution $y = e^t$
- As a matter of fact, it's the general solution!
- VICTORY IS OURS!

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

<ロ> <同> <同> <同> <同> <同> <同> <同> <

- If v''(t) = 0, what is v?
- v(t) = At + B for some constants A, B
- We've got a new solution!

$$y = (At + B)e^t$$

- In fact, this is a two-parameter family of solutions
- It includes the old solution $y = e^t$
- As a matter of fact, it's the general solution!
- VICTORY IS OURS!

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

<ロ> (四) (四) (三) (三) (三)

- If v''(t) = 0, what is v?
- v(t) = At + B for some constants A, B
- We've got a new solution!

$$y = (At + B)e^t$$

- In fact, this is a two-parameter family of solutions
- It includes the old solution $y = e^t$
- As a matter of fact, it's the general solution!
- VICTORY IS OURS!

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

<ロ> (四) (四) (三) (三) (三)

- If v''(t) = 0, what is v?
- v(t) = At + B for some constants A, B
- We've got a new solution!

$$y = (At + B)e^t$$

- In fact, this is a two-parameter family of solutions
- It includes the old solution $y = e^t$
- As a matter of fact, it's the general solution!
- VICTORY IS OURS!

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 理 ト ・ ヨ ト ・

- If v''(t) = 0, what is v?
- v(t) = At + B for some constants A, B
- We've got a new solution!

$$y = (At + B)e^t$$

- In fact, this is a two-parameter family of solutions
- It includes the old solution $y = e^t$
- As a matter of fact, it's the general solution!
- VICTORY IS OURS!

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

A recap of what we just did...

Figure : We can follow the steps on the right to get to the treasure. Is there possibly a more direct path?

Step 1: Figure out what the repeated root *r* is

- Step 2: Propose a solution of the form $y = v(t)e^{rt}$
- Step 3: Calculate y' and y'' and throw everything back into the ODE
- Step 4: Simplify to obtain an ODE for *v*
- Step 5: Solve for v, and write down the general solution $y = v(t)e^{rt}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

A recap of what we just did...

Figure : We can follow the steps on the right to get to the treasure. Is there possibly a more direct path?

Step 1: Figure out what the repeated root *r* is

Step 2: Propose a solution of the form $y = v(t)e^{rt}$

- Step 3: Calculate y' and y'' and throw everything back into the ODE
- Step 4: Simplify to obtain an ODE for *v*
- Step 5: Solve for *v*, and write down the general solution $y = v(t)e^{rt}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

A recap of what we just did...

Figure : We can follow the steps on the right to get to the treasure. Is there possibly a more direct path?

Step 1: Figure out what the repeated root *r* is

Step 2: Propose a solution of the form $y = v(t)e^{rt}$

Step 3: Calculate y' and y" and throw everything back into the ODE

- Step 4: Simplify to obtain an ODE for *v*
- Step 5: Solve for *v*, and write down the general solution $y = v(t)e^{rt}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

A recap of what we just did...

Figure : We can follow the steps on the right to get to the treasure. Is there possibly a more direct path?

Step 1: Figure out what the repeated root *r* is

- Step 2: Propose a solution of the form $y = v(t)e^{rt}$
- Step 3: Calculate y' and y'' and throw everything back into the ODE
- Step 4: Simplify to obtain an ODE for *v*
- Step 5: Solve for *v*, and write down the general solution $y = v(t)e^{rt}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

A recap of what we just did...

Figure : We can follow the steps on the right to get to the treasure. Is there possibly a more direct path?

- Step 1: Figure out what the repeated root *r* is
- Step 2: Propose a solution of the form $y = v(t)e^{rt}$
- Step 3: Calculate y' and y'' and throw everything back into the ODE
- Step 4: Simplify to obtain an ODE for *v*
- Step 5: Solve for v, and write down the general solution $y = v(t)e^{rt}$

・ロト ・回ト ・ヨト ・ヨト

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

A recap of what we just did...

Figure : We can follow the steps on the right to get to the treasure. Is there possibly a more direct path?

- Step 1: Figure out what the repeated root *r* is
- Step 2: Propose a solution of the form $y = v(t)e^{rt}$
- Step 3: Calculate y' and y'' and throw everything back into the ODE
- Step 4: Simplify to obtain an ODE for *v*
- Step 5: Solve for *v*, and write down the general solution $y = v(t)e^{rt}$

イロト イ理ト イヨト イヨト

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロット (雪) () () () ()

ъ

Another Example

Example

Find a solution to the initial value problem

$$y'' - y' + 0.25y = 0$$
, $y(0) = 2$, $y'(0) = \frac{1}{3}$

• The characteristic equation is

$$r^2 - r + 0.25 = 0$$

- What are the roots of this equation?
- Roots are $r_1 = r_2 = 1/2$
- So one solution is $y = e^{t/2}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロン ヘアン ヘビン ヘビン

ъ

Another Example

Example

Find a solution to the initial value problem

$$y'' - y' + 0.25y = 0$$
, $y(0) = 2$, $y'(0) = \frac{1}{3}$

The characteristic equation is

$$r^2 - r + 0.25 = 0$$

- What are the roots of this equation?
- Roots are $r_1 = r_2 = 1/2$
- So one solution is $y = e^{t/2}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロン ヘアン ヘビン ヘビン

ъ

Another Example

Example

Find a solution to the initial value problem

$$y'' - y' + 0.25y = 0$$
, $y(0) = 2$, $y'(0) = \frac{1}{3}$

The characteristic equation is

$$r^2 - r + 0.25 = 0$$

What are the roots of this equation?

- Roots are $r_1 = r_2 = 1/2$
- So one solution is $y = e^{t/2}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロア 人間 アメヨア 人口 ア

ъ

Another Example

Example

Find a solution to the initial value problem

$$y'' - y' + 0.25y = 0$$
, $y(0) = 2$, $y'(0) = \frac{1}{3}$

The characteristic equation is

$$r^2 - r + 0.25 = 0$$

- What are the roots of this equation?
- Roots are $r_1 = r_2 = 1/2$
- So one solution is $y = e^{t/2}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Another Example

Example

Find a solution to the initial value problem

$$y'' - y' + 0.25y = 0$$
, $y(0) = 2$, $y'(0) = \frac{1}{3}$

The characteristic equation is

$$r^2 - r + 0.25 = 0$$

- What are the roots of this equation?
- Roots are $r_1 = r_2 = 1/2$
- So one solution is $y = e^{t/2}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- What do we do next?
- Propose a solution $y = v(t)e^{t/2}$.
- Then $y'(t) = v'(t)e^{t/2} + \frac{1}{2}v(t)e^{t/2}$
- and $y''(t) = v''(t)e^{t/2} + v'(t)e^{t/2} + \frac{1}{4}v(t)e^{t/2}$
- Then since y is a solution, we must have

$$0 = y'' - y' + 0.25y = v''(t)e^{t/2}$$

$$y(t) = (At + B)e^{t/2}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

1

Another Example

What do we do next?

- Propose a solution $y = v(t)e^{t/2}$.
- Then $y'(t) = v'(t)e^{t/2} + \frac{1}{2}v(t)e^{t/2}$
- and $y''(t) = v''(t)e^{t/2} + v'(t)e^{t/2} + \frac{1}{4}v(t)e^{t/2}$
- Then since y is a solution, we must have

$$0 = y'' - y' + 0.25y = v''(t)e^{t/2}$$

$$y(t) = (At + B)e^{t/2}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- What do we do next?
- Propose a solution $y = v(t)e^{t/2}$.
- Then $y'(t) = v'(t)e^{t/2} + \frac{1}{2}v(t)e^{t/2}$
- and $y''(t) = v''(t)e^{t/2} + v'(t)e^{t/2} + \frac{1}{4}v(t)e^{t/2}$
- Then since y is a solution, we must have

$$0 = y'' - y' + 0.25y = v''(t)e^{t/2}$$

$$y(t) = (At + B)e^{t/2}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- What do we do next?
- Propose a solution $y = v(t)e^{t/2}$.
- Then $y'(t) = v'(t)e^{t/2} + \frac{1}{2}v(t)e^{t/2}$
- and $y''(t) = v''(t)e^{t/2} + v'(t)e^{t/2} + \frac{1}{4}v(t)e^{t/2}$
- Then since y is a solution, we must have

$$0 = y'' - y' + 0.25y = v''(t)e^{t/2}$$

$$y(t) = (At + B)e^{t/2}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- What do we do next?
- Propose a solution $y = v(t)e^{t/2}$.
- Then $y'(t) = v'(t)e^{t/2} + \frac{1}{2}v(t)e^{t/2}$
- and $y''(t) = v''(t)e^{t/2} + v'(t)e^{t/2} + \frac{1}{4}v(t)e^{t/2}$
- Then since y is a solution, we must have

$$0 = y'' - y' + 0.25y = v''(t)e^{t/2}$$

This means v''(t) = 0, and therefore v(t) = At + B
General solution:

$$y(t) = (At + B)e^{t/2}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- What do we do next?
- Propose a solution $y = v(t)e^{t/2}$.
- Then $y'(t) = v'(t)e^{t/2} + \frac{1}{2}v(t)e^{t/2}$
- and $y''(t) = v''(t)e^{t/2} + v'(t)e^{t/2} + \frac{1}{4}v(t)e^{t/2}$
- Then since y is a solution, we must have

$$0 = y'' - y' + 0.25y = v''(t)e^{t/2}$$

- This means v''(t) = 0, and therefore v(t) = At + B
- General solution:

$$y(t) = (At + B)e^{t/2}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Another Example

- What do we do next?
- Propose a solution $y = v(t)e^{t/2}$.
- Then $y'(t) = v'(t)e^{t/2} + \frac{1}{2}v(t)e^{t/2}$
- and $y''(t) = v''(t)e^{t/2} + v'(t)e^{t/2} + \frac{1}{4}v(t)e^{t/2}$
- Then since y is a solution, we must have

$$0 = y'' - y' + 0.25y = v''(t)e^{t/2}$$

• This means v''(t) = 0, and therefore v(t) = At + B

General solution:

$$y(t) = (At + B)e^{t/2}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- What do we do next?
- Propose a solution $y = v(t)e^{t/2}$.
- Then $y'(t) = v'(t)e^{t/2} + \frac{1}{2}v(t)e^{t/2}$
- and $y''(t) = v''(t)e^{t/2} + v'(t)e^{t/2} + \frac{1}{4}v(t)e^{t/2}$
- Then since y is a solution, we must have

$$0 = y'' - y' + 0.25y = v''(t)e^{t/2}$$

- This means v''(t) = 0, and therefore v(t) = At + B
- General solution:

$$y(t) = (At + B)e^{t/2}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- To solve the IVP, we need to find A and B
- Initial condition is y(0) = 2, y'(0) = 1/3
- Also y(0) = B
- and $y'((t) = \frac{A}{2}t + \frac{B}{2} + A)e^{t/2}$
- so y'(0) = A + B/2
- So we have linear system of equations

B = 2A + B/2 = 1/3

$$y = -\frac{2}{3}te^{t/2} + 2e^{t/2}.$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

1

Another Example

- To solve the IVP, we need to find A and B
- Initial condition is y(0) = 2, y'(0) = 1/3
- Also y(0) = B
- and $y'((t) = \frac{A}{2}t + \frac{B}{2} + A)e^{t/2}$
- so y'(0) = A + B/2
- So we have linear system of equations

B = 2A + B/2 = 1/3

$$y = -\frac{2}{3}te^{t/2} + 2e^{t/2}.$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

1

Another Example

- To solve the IVP, we need to find A and B
- Initial condition is y(0) = 2, y'(0) = 1/3
- Also y(0) = B
- and $y'((t) = \frac{A}{2}t + \frac{B}{2} + A)e^{t/2}$
- so y'(0) = A + B/2
- So we have linear system of equations

B = 2A + B/2 = 1/3

$$y = -\frac{2}{3}te^{t/2} + 2e^{t/2}.$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

1

Another Example

- To solve the IVP, we need to find A and B
- Initial condition is y(0) = 2, y'(0) = 1/3
- Also y(0) = B
- and $y'((t) = \frac{A}{2}t + \frac{B}{2} + A)e^{t/2}$
- so y'(0) = A + B/2
- So we have linear system of equations

B = 2A + B/2 = 1/3

$$y = -\frac{2}{3}te^{t/2} + 2e^{t/2}.$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- To solve the IVP, we need to find A and B
- Initial condition is y(0) = 2, y'(0) = 1/3
- Also y(0) = B
- and $y'((t) = \frac{A}{2}t + \frac{B}{2} + A)e^{t/2}$
- so y'(0) = A + B/2
- So we have linear system of equations

B = 2A + B/2 = 1/3

$$y = -\frac{2}{3}te^{t/2} + 2e^{t/2}$$
.

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- To solve the IVP, we need to find A and B
- Initial condition is y(0) = 2, y'(0) = 1/3
- Also y(0) = B
- and $y'((t) = \frac{A}{2}t + \frac{B}{2} + A)e^{t/2}$
- so y'(0) = A + B/2

• So we have linear system of equations

B = 2A + B/2 = 1/3

$$y = -\frac{2}{3}te^{t/2} + 2e^{t/2}$$
.

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- To solve the IVP, we need to find A and B
- Initial condition is y(0) = 2, y'(0) = 1/3
- Also y(0) = B
- and $y'((t) = \frac{A}{2}t + \frac{B}{2} + A)e^{t/2}$
- so y'(0) = A + B/2
- So we have linear system of equations

$$B = 2$$
$$A + B/2 = 1/3$$

$$y = -\frac{2}{3}te^{t/2} + 2e^{t/2}.$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

Another Example

- To solve the IVP, we need to find A and B
- Initial condition is y(0) = 2, y'(0) = 1/3
- Also y(0) = B
- and $y'((t) = \frac{A}{2}t + \frac{B}{2} + A)e^{t/2}$
- so y'(0) = A + B/2
- So we have linear system of equations

$$B = 2$$

 $A + B/2 = 1/3$

$$y = -\frac{2}{3}te^{t/2} + 2e^{t/2}$$
.

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロト イポト イヨト イヨト

Outline

The Case of Repeated Roots

- Review of what we know
- Repeated Roots: Some Examples
- Repeated Roots: The General Case
- Try it Yourself!
- 2 General Reduction of Order
 - An Example
 - Try it Yourself

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘ回ト ヘヨト ヘヨト

In general, what should we expect?

• Consider the ODE

$$ay'' + by' + cy = 0$$

• and suppose that the characteristic equation

 $ar^2 + br + c = 0$

- then the discriminant $b^2 4ac = 0$
- and the roots are $r_1 = r_2 = -b/2a$
- so we propose a solution of the form $y = v(t)e^{-bt/2a}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・回ト ・ヨト ・ヨト

In general, what should we expect?

Consider the ODE

$$ay''+by'+cy=0$$

• and suppose that the characteristic equation

 $ar^2 + br + c = 0$

- then the discriminant $b^2 4ac = 0$
- and the roots are $r_1 = r_2 = -b/2a$
- so we propose a solution of the form $y = v(t)e^{-bt/2a}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘ回ト ヘヨト ヘヨト

In general, what should we expect?

• Consider the ODE

$$ay''+by'+cy=0$$

• and suppose that the characteristic equation

$$ar^2 + br + c = 0$$

- then the discriminant $b^2 4ac = 0$
- and the roots are $r_1 = r_2 = -b/2a$
- so we propose a solution of the form $y = v(t)e^{-bt/2a}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ 同 ト ・ ヨ ト ・ ヨ ト

In general, what should we expect?

• Consider the ODE

$$ay''+by'+cy=0$$

• and suppose that the characteristic equation

$$ar^2 + br + c = 0$$

- then the discriminant $b^2 4ac = 0$
- and the roots are $r_1 = r_2 = -b/2a$
- so we propose a solution of the form $y = v(t)e^{-bt/2a}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

<<p>(日)、<</p>

In general, what should we expect?

• Consider the ODE

$$ay''+by'+cy=0$$

• and suppose that the characteristic equation

$$ar^2 + br + c = 0$$

has a repeated root

- then the discriminant $b^2 4ac = 0$
- and the roots are $r_1 = r_2 = -b/2a$

• so we propose a solution of the form $y = v(t)e^{-bt/2a}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

In general, what should we expect?

• Consider the ODE

$$ay''+by'+cy=0$$

• and suppose that the characteristic equation

$$ar^2 + br + c = 0$$

- then the discriminant $b^2 4ac = 0$
- and the roots are $r_1 = r_2 = -b/2a$
- so we propose a solution of the form $y = v(t)e^{-bt/2a}$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロン ヘアン ヘビン ヘビン

э

In general, what should we expect?

• We calculate

$$y' = v'(t)e^{-bt/2a} - \frac{b}{2a}e^{-bt/2a}$$

and

$$y'' = v''(t)e^{-bt/2a} + \frac{b}{a}v'(t)e^{-bt/2a} + \frac{b^2}{4a^2}v(t)e^{-bt/2a}$$

• Then the equation

$$ay'' + by' + cy = 0$$

becomes after a bit of algebra (using the fact that $b^2 = 4ac$)

$$v''(t) = 0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

・ロト ・ 理 ト ・ ヨ ト ・

э

In general, what should we expect?

We calculate

$$\mathbf{y}' = \mathbf{v}'(t)\mathbf{e}^{-bt/2a} - \frac{b}{2a}\mathbf{e}^{-bt/2a}$$

and

$$y'' = v''(t)e^{-bt/2a} + rac{b}{a}v'(t)e^{-bt/2a} + rac{b^2}{4a^2}v(t)e^{-bt/2a}$$

Then the equation

$$ay'' + by' + cy = 0$$

becomes after a bit of algebra (using the fact that $b^2 = 4ac$)

$$v''(t)=0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト 人間 とくほとくほとう

æ

In general, what should we expect?

We calculate

$$\mathbf{y}' = \mathbf{v}'(t)\mathbf{e}^{-bt/2a} - \frac{b}{2a}\mathbf{e}^{-bt/2a}$$

and

$$y'' = v''(t)e^{-bt/2a} + \frac{b}{a}v'(t)e^{-bt/2a} + \frac{b^2}{4a^2}v(t)e^{-bt/2a}$$

Then the equation

$$ay'' + by' + cy = 0$$

becomes after a bit of algebra (using the fact that $b^2 = 4ac$)

$$\mathbf{v}''(t)=\mathbf{0}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロト イポト イヨト イヨト

In general, what should we expect?

- Just like we got all the other times we did repeated roots!
- Then v(t) = At + B
- And the general solution is therefore

$$y = Ate^{-bt/2a} + Be^{-bt/2a}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト ヘ戸ト ヘヨト ヘヨト

In general, what should we expect?

- Just like we got all the other times we did repeated roots!
- Then v(t) = At + B
- And the general solution is therefore

$$y = Ate^{-bt/2a} + Be^{-bt/2a}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロト イポト イヨト イヨト

In general, what should we expect?

- Just like we got all the other times we did repeated roots!
- Then v(t) = At + B
- And the general solution is therefore

$$y = Ate^{-bt/2a} + Be^{-bt/2a}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロト イポト イヨト イヨト

In general, what should we expect?

- Just like we got all the other times we did repeated roots!
- Then v(t) = At + B
- And the general solution is therefore

$$y = Ate^{-bt/2a} + Be^{-bt/2a}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

In general, what should we expect?

- Just like we got all the other times we did repeated roots!
- Then v(t) = At + B
- And the general solution is therefore

$$y = Ate^{-bt/2a} + Be^{-bt/2a}$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロト イポト イヨト イヨト

Outline

The Case of Repeated Roots

- Review of what we know
- Repeated Roots: Some Examples
- Repeated Roots: The General Case
- Try it Yourself!
- 2 General Reduction of Order
 - An Example
 - Try it Yourself

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Try it Yourself!

$$9y'' + 6y' + y = 0$$

$$y^{\prime\prime}-6y^{\prime}+9y=0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト 人間 とくほとくほとう

2

Try it Yourself!

۲

$$25y'' - 20y' + 4y = 0$$

$$9y'' + 6y' + y = 0$$

$$y^{\prime\prime}-6y^{\prime}+9y=0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト 人間 とくほとくほとう

2

Try it Yourself!

۲

$$25y'' - 20y' + 4y = 0$$

$$9y''+6y'+y=0$$

$$y''-6y'+9y=0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

ヘロト 人間 とくほとくほとう

2

Try it Yourself!

۲

٥

$$25y'' - 20y' + 4y = 0$$

$$9y''+6y'+y=0$$

$$y^{\prime\prime}-6y^{\prime}+9y=0$$

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

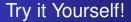
Solve the initial value problem

9y'' - 12y' + 4y = 0, y(0) = 2, y'(0) = -1

Review of what we know Repeated Roots: Some Examples Repeated Roots: The General Case Try it Yourself!

イロン 不同 とくほ とくほ とう

2



Solve the initial value problem

۲

$$9y'' - 12y' + 4y = 0$$
, $y(0) = 2$, $y'(0) = -1$

An Example Try it Yourself

Outline

The Case of Repeated Roots

- Review of what we know
- Repeated Roots: Some Examples
- Repeated Roots: The General Case
- Try it Yourself!

イロト イポト イヨト イヨト

An Example Try it Yourself

There's more to the story...

- The method that we first demonstrated can be applied more generally.
- For example consider the second order linear ODE

$$2t^2y'' + 3ty' - y = 0, \ t > 0$$

- Suppose we know a solution: y = 1/t
- How might we try to get the general solution?
- We could try a solution of the form y(t) = v(t)/t
- Then see if we can get a nice ODE for *v*(*t*) that we can find a general solution for...
- This method is called *reduction of order*

An Example Try it Yourself

- The method that we first demonstrated can be applied more generally.
- For example consider the second order linear ODE

$$2t^2y'' + 3ty' - y = 0, \ t > 0$$

- Suppose we know a solution: y = 1/t
- How might we try to get the general solution?
- We could try a solution of the form y(t) = v(t)/t
- Then see if we can get a nice ODE for *v*(*t*) that we can find a general solution for...
- This method is called *reduction of order*

- The method that we first demonstrated can be applied more generally.
- For example consider the second order linear ODE

$$2t^2y'' + 3ty' - y = 0, t > 0$$

- Suppose we know a solution: y = 1/t
- How might we try to get the general solution?
- We could try a solution of the form y(t) = v(t)/t
- Then see if we can get a nice ODE for *v*(*t*) that we can find a general solution for...
- This method is called *reduction of order*

There's more to the story...

- The method that we first demonstrated can be applied more generally.
- For example consider the second order linear ODE

$$2t^2y'' + 3ty' - y = 0, t > 0$$

• Suppose we know a solution: y = 1/t

- How might we try to get the general solution?
- We could try a solution of the form y(t) = v(t)/t
- Then see if we can get a nice ODE for *v*(*t*) that we can find a general solution for...
- This method is called *reduction of order*

- The method that we first demonstrated can be applied more generally.
- For example consider the second order linear ODE

$$2t^2y'' + 3ty' - y = 0, t > 0$$

- Suppose we know a solution: y = 1/t
- How might we try to get the general solution?
- We could try a solution of the form y(t) = v(t)/t
- Then see if we can get a nice ODE for *v*(*t*) that we can find a general solution for...
- This method is called *reduction of order*

- The method that we first demonstrated can be applied more generally.
- For example consider the second order linear ODE

$$2t^2y'' + 3ty' - y = 0, t > 0$$

- Suppose we know a solution: y = 1/t
- How might we try to get the general solution?
- We could try a solution of the form y(t) = v(t)/t
- Then see if we can get a nice ODE for *v*(*t*) that we can find a general solution for...
- This method is called *reduction of order*

- The method that we first demonstrated can be applied more generally.
- For example consider the second order linear ODE

$$2t^2y'' + 3ty' - y = 0, t > 0$$

- Suppose we know a solution: y = 1/t
- How might we try to get the general solution?
- We could try a solution of the form y(t) = v(t)/t
- Then see if we can get a nice ODE for v(t) that we can find a general solution for...
- This method is called *reduction of order*

- The method that we first demonstrated can be applied more generally.
- For example consider the second order linear ODE

$$2t^2y'' + 3ty' - y = 0, t > 0$$

- Suppose we know a solution: y = 1/t
- How might we try to get the general solution?
- We could try a solution of the form y(t) = v(t)/t
- Then see if we can get a nice ODE for *v*(*t*) that we can find a general solution for...
- This method is called *reduction of order*

An Example Try it Yourself

There's more to the story...

- Let's give it a go!
- Notice that

$$y'(t) = v'(t)/t - v(t)/t^2$$

and also

$$y''(t) = v''(t)/t - 2v'(t)/t^2 + 2v(t)/t^3$$

• Then since y is a solution to the ODE, we must have $0 = 2t^2y'' + 3ty' - y$ = 2tv''(t) - 4v'(t) + 4v(t)/t + 3tv'(t) - 3v(t)/t - v(t)/t = 2tv''(t) - v'(t)

An Example Try it Yourself

There's more to the story...

- Let's give it a go!
- Notice that

 $y'(t) = v'(t)/t - v(t)/t^2$

and also

$$y''(t) = v''(t)/t - 2v'(t)/t^2 + 2v(t)/t^3$$

• Then since y is a solution to the ODE, we must have $0 = 2t^2y'' + 3ty' - y$ = 2tv''(t) - 4v'(t) + 4v(t)/t + 3tv'(t) - 3v(t)/t - v(t)/t = 2tv''(t) - v'(t)

An Example Try it Yourself

There's more to the story...

- Let's give it a go!
- Notice that

$$y'(t) = v'(t)/t - v(t)/t^2$$

and also

$$y''(t) = v''(t)/t - 2v'(t)/t^2 + 2v(t)/t^3$$

• Then since *y* is a solution to the ODE, we must have

$$0 = 2t^{2}y'' + 3ty' - y$$

= 2tv''(t) - 4v'(t) + 4v(t)/t + 3tv'(t) - 3v(t)/t - v(t)/t
= 2tv''(t) - v'(t)

ヘロト 人間 ト ヘヨト ヘヨト

ъ

An Example Try it Yourself

There's more to the story...

- Let's give it a go!
- Notice that

$$\mathbf{y}'(t) = \mathbf{v}'(t)/t - \mathbf{v}(t)/t^2$$

and also

$$y''(t) = v''(t)/t - 2v'(t)/t^2 + 2v(t)/t^3$$

• Then since y is a solution to the ODE, we must have $0 = 2t^{2}y'' + 3ty' - y$ = 2tv''(t) - 4v'(t) + 4v(t)/t + 3tv'(t) - 3v(t)/t - v(t) = 2tv''(t) - v'(t)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

An Example Try it Yourself

There's more to the story...

- Let's give it a go!
- Notice that

$$\mathbf{y}'(t) = \mathbf{v}'(t)/t - \mathbf{v}(t)/t^2$$

and also

$$y''(t) = v''(t)/t - 2v'(t)/t^2 + 2v(t)/t^3$$

• Then since y is a solution to the ODE, we must have $0 = 2t^2y'' + 3ty' - y$ = 2tv''(t) - 4v'(t) + 4v(t)/t + 3tv'(t) - 3v(t)/t - v(t)/t = 2tv''(t) - v'(t)

ヘロト 人間 とくほとく ほとう

An Example Try it Yourself

There's more to the story...

So we've found that

2tv''(t)-v'(t)=0

- Substituting w'(t) = v'(t), we find 2tw' - w = 0
- Separable! Solution is w(t) = At^{1/2}.
 Then v'(t) = Ct^{1/2}, and therefore (for A = ²/₃C)

$$v(t) = At^{3/2} + B$$

• General solution: $y(t) = At^{1/2} + Bt^{-1}$

An Example Try it Yourself

There's more to the story...

So we've found that

 $2t\mathbf{v}''(t)-\mathbf{v}'(t)=0$

- Substituting w'(t) = v'(t), we find 2tw' - w = 0
- Separable! Solution is w(t) = At^{1/2}.
 Then v'(t) = Ct^{1/2}, and therefore (for A = ²/₃C)

$$v(t) = At^{3/2} + B$$

• General solution: $y(t) = At^{1/2} + Bt^{-1}$

An Example Try it Yourself

There's more to the story...

So we've found that

$$2t\mathbf{v}''(t)-\mathbf{v}'(t)=\mathbf{0}$$

- Substituting w'(t) = v'(t), we find 2tw' - w = 0
- Separable! Solution is w(t) = At^{1/2}.
 Then v'(t) = Ct^{1/2}, and therefore (for A = ²/₃C)

$$v(t) = At^{3/2} + B$$

• General solution: $y(t) = At^{1/2} + Bt^{-1}$

< 🗆 > < 🗇 >

An Example Try it Yourself

There's more to the story...

So we've found that

$$2t\mathbf{v}''(t)-\mathbf{v}'(t)=\mathbf{0}$$

- Substituting w'(t) = v'(t), we find 2tw' - w = 0
- Separable! Solution is w(t) = At^{1/2}.
 Then v'(t) = Ct^{1/2}, and therefore (for A = ²/₃C) v(t) = At^{3/2} + B
- General solution: $y(t) = At^{1/2} + Bt^{-1}$

< 🗆 > < 🗇 >

An Example Try it Yourself

There's more to the story...

So we've found that

$$2t\mathbf{v}''(t)-\mathbf{v}'(t)=\mathbf{0}$$

• Substituting w'(t) = v'(t), we find

$$2tw'-w=0$$

- Separable! Solution is w(t) = At^{1/2}.
 Then v'(t) = Ct^{1/2}, and therefore (for A = ²/₃C) v(t) = At^{3/2} + B
- General solution: $y(t) = At^{1/2} + Bt^{-1}$

An Example Try it Yourself

There's more to the story...

So we've found that

$$2tv''(t)-v'(t)=0$$

• Substituting w'(t) = v'(t), we find

$$2tw'-w=0$$

Separable! Solution is w(t) = At^{1/2}.
Then v'(t) = Ct^{1/2}, and therefore (for A = ²/₃C)

$$v(t) = At^{3/2} + B$$

• General solution: $y(t) = At^{1/2} + Bt^{-1}$

An Example Try it Yourself

Outline

The Case of Repeated Roots

- Review of what we know
- Repeated Roots: Some Examples
- Repeated Roots: The General Case
- Try it Yourself!

Try it Yourself

イロト イポト イヨト イヨト

æ

An Example Try it Yourself

Try it Yourself!

Find the general solution

• Using the fact that $y(t) = t^2$ is a solution to the ODE

$$t^2y'' - 4ty' + 6y = 0, \ t > 0$$

find the general solution to the ODE

ヘロン 人間 とくほ とくほ とう

An Example Try it Yourself

Find the general solution

• Using the fact that $y(t) = t^2$ is a solution to the ODE

$$t^2y'' - 4ty' + 6y = 0, t > 0$$

find the general solution to the ODE

ヘロト 人間 とくほとくほとう

Review!

Today:

- What happens when the characteristic polynomial has repeated roots
- Reduction of order

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロト ヘアト ヘビト ヘビト

ъ

Review!

Today:

- What happens when the characteristic polynomial has repeated roots
- Reduction of order

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロト ヘアト ヘビト ヘビト

Review!

Today:

- What happens when the characteristic polynomial has repeated roots
- Reduction of order

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロト ヘアト ヘビト ヘビト

Review!

Today:

- What happens when the characteristic polynomial has repeated roots
- Reduction of order

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロト ヘアト ヘビト ヘビト

Review!

Today:

- What happens when the characteristic polynomial has repeated roots
- Reduction of order

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロト ヘアト ヘビト ヘビト

Review!

Today:

- What happens when the characteristic polynomial has repeated roots
- Reduction of order

Next time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

ヘロン 人間 とくほ とくほ とう