Math 307 Lecture 13 Nonhomogeneous Equations and the Method of Undetermined Parameters

W.R. Casper

Department of Mathematics University of Washington

May 2, 2014

W.R. Casper Math 307 Lecture 13

ヘロト ヘアト ヘビト ヘビト

Last time:

• 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

This time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

Next time:

• More on 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients

くロト (過) (目) (日)

Last time:

• 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

This time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

Next time:

• More on 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients

ヘロン 人間 とくほ とくほ とう

ъ

Last time:

• 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

This time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

Next time:

• More on 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients

ヘロン 人間 とくほ とくほ とう

ъ

Last time:

• 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

This time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

Next time:

• More on 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients

ヘロン 人間 とくほ とくほ とう

Last time:

• 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

This time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

Next time:

• More on 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients

ヘロン 人間 とくほ とくほ とう

Last time:

• 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

This time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

Next time:

• More on 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients

ヘロン 人間 とくほ とくほ とう

Last time:

• 2nd-Order Hom. Lin. Eqns. with Constant Coefficients with characteristic polynomials having repeated roots

This time:

- 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients
- Method of Undetermined Coefficients

Next time:

 More on 2nd-Order Nonhomogeneous Linear ODEs. with Constant Coefficients

ヘロン 人間 とくほ とくほ とう

Outline

A First Look at Nonhomogeneous Equations

- Associated Homogeneous Equation
- Linear Equations as Operators

2 Example Lovefest

- A few good examples
- Try it Yourself

프 🕨 🗉 프

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

æ

Outline

A First Look at Nonhomogeneous Equations

- Associated Homogeneous Equation
- Linear Equations as Operators

2 Example Lovefest

- A few good examples
- Try it Yourself

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

Nonhomogeneous Equations

 Recall that a general second order linear equation is something of the form

$$a(t)y'' + b(t)y' + c(t)y = f(t),$$

with *a*, *b*, *c* and *f* are functions.

- It is *nonhomogeneous* if and only if *f* is nonzero.
- For example the equation

$$y'' = 3y' - 4y = 3e^{2t}$$

is nonhomogeneous.

くロト (過) (目) (日)

Nonhomogeneous Equations

 Recall that a general second order linear equation is something of the form

$$a(t)y'' + b(t)y' + c(t)y = f(t),$$

with *a*, *b*, *c* and *f* are functions.

- It is *nonhomogeneous* if and only if *f* is nonzero.
- For example the equation

$$y'' = 3y' - 4y = 3e^{2t}$$

is nonhomogeneous.

Nonhomogeneous Equations

 Recall that a general second order linear equation is something of the form

$$a(t)y'' + b(t)y' + c(t)y = f(t),$$

with *a*, *b*, *c* and *f* are functions.

• It is *nonhomogeneous* if and only if *f* is nonzero.

• For example the equation

$$y'' = 3y' - 4y = 3e^{2t}$$

is nonhomogeneous.

くロト (過) (目) (日)

Nonhomogeneous Equations

 Recall that a general second order linear equation is something of the form

$$a(t)y'' + b(t)y' + c(t)y = f(t),$$

with *a*, *b*, *c* and *f* are functions.

- It is *nonhomogeneous* if and only if *f* is nonzero.
- For example the equation

$$y^{\prime\prime}=3y^{\prime}-4y=3e^{2t}$$

is nonhomogeneous.

イロト イポト イヨト イヨト

Associated Homogeneous Equation Linear Equations as Operators

ヘロト ヘワト ヘビト ヘビト

Associated Homogeneous Equation

• Suppose we have a nonhomogeneous equation ($f \neq 0$):

$$a(t)y'' + b(t)y' + c(t)y = f(t),$$

• We have the following definition.

Definition

The associated homogeneous equation is the equation

$$a(t)y'' + b(t)y' + c(t)y = 0,$$

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

Associated Homogeneous Equation

• Suppose we have a nonhomogeneous equation ($f \neq 0$):

$$a(t)y'' + b(t)y' + c(t)y = f(t),$$

• We have the following definition.

Definition

The associated homogeneous equation is the equation

$$a(t)y'' + b(t)y' + c(t)y = 0,$$

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

Associated Homogeneous Equation

• Suppose we have a nonhomogeneous equation ($f \neq 0$):

$$a(t)y'' + b(t)y' + c(t)y = f(t),$$

• We have the following definition.

The *associated homogeneous equation* is the equation

$$a(t)y'' + b(t)y' + c(t)y = 0,$$

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

Associated Homogeneous Equation

• Suppose we have a nonhomogeneous equation ($f \neq 0$):

$$a(t)y'' + b(t)y' + c(t)y = f(t),$$

• We have the following definition.

Definition

The associated homogeneous equation is the equation

$$a(t)y'' + b(t)y' + c(t)y = 0,$$

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

Associated Homogeneous Equation

• Suppose we have a nonhomogeneous equation ($f \neq 0$):

$$a(t)y'' + b(t)y' + c(t)y = f(t),$$

• We have the following definition.

Definition

The associated homogeneous equation is the equation

$$a(t)y'' + b(t)y' + c(t)y = 0,$$

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

Associated Homogeneous Equation

• In what way could they be related?

Theorem

- Why is this?
- It's because linear differential equations act linearly on y
- To understand what we mean by this, we need to think about linear differential equations in a new way!

Associated Homogeneous Equation

In what way could they be related?

Theorem

- Why is this?
- It's because linear differential equations act linearly on y
- To understand what we mean by this, we need to think about linear differential equations in a new way!

Associated Homogeneous Equation

In what way could they be related?

Theorem

- Why is this?
- It's because linear differential equations act linearly on y
- To understand what we mean by this, we need to think about linear differential equations in a new way!

Associated Homogeneous Equation

In what way could they be related?

Theorem

If Y_1 and Y_2 are solutions of a nonhomogeneous lnear equation, then $Y_1 - Y_2$ is a solution to the corresponding homogeneous equation.

Why is this?

- It's because linear differential equations act linearly on y
- To understand what we mean by this, we need to think about linear differential equations in a new way!

Associated Homogeneous Equation

In what way could they be related?

Theorem

- Why is this?
- It's because linear differential equations act linearly on y
- To understand what we mean by this, we need to think about linear differential equations in a new way!

ヘロト ヘアト ヘビト ヘ

Associated Homogeneous Equation

In what way could they be related?

Theorem

- Why is this?
- It's because linear differential equations act linearly on y
- To understand what we mean by this, we need to think about linear differential equations in a new way!

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

æ

Outline

A First Look at Nonhomogeneous Equations

- Associated Homogeneous Equation
- Linear Equations as Operators

2 Example Lovefest

- A few good examples
- Try it Yourself

Associated Homogeneous Equation Linear Equations as Operators

ヘロト ヘアト ヘヨト ヘ

Linear Equations as Linear Operators

• For any function y, we define

$$L[y] = a(t)y'' + b(t)y' + c(t)y.$$

Notice that if y₁ and y₂ are functions, and A and B are constants then (check this!)

$$L[Ay_1 + By_2] = AL[y_1] + BL[y_2].$$

Also the equation

$$a(t)y'' + b(t)y' + c(t)y = f(t)$$

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

Linear Equations as Linear Operators

• For any function y, we define

$$L[y] = a(t)y'' + b(t)y' + c(t)y.$$

Notice that if y₁ and y₂ are functions, and A and B are constants then (check this!)

$$L[Ay_1 + By_2] = AL[y_1] + BL[y_2].$$

Also the equation

$$a(t)y'' + b(t)y' + c(t)y = f(t)$$

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

Linear Equations as Linear Operators

• For any function y, we define

$$L[y] = a(t)y'' + b(t)y' + c(t)y.$$

Notice that if y₁ and y₂ are functions, and A and B are constants then (check this!)

$$L[Ay_1 + By_2] = AL[y_1] + BL[y_2].$$

Also the equation

$$a(t)y'' + b(t)y' + c(t)y = f(t)$$

Associated Homogeneous Equation Linear Equations as Operators

イロト イポト イヨト イヨト

Linear Equations as Linear Operators

• For any function y, we define

$$L[y] = a(t)y'' + b(t)y' + c(t)y.$$

Notice that if y₁ and y₂ are functions, and A and B are constants then (check this!)

$$L[Ay_1 + By_2] = AL[y_1] + BL[y_2].$$

Also the equation

$$a(t)y'' + b(t)y' + c(t)y = f(t)$$

Associated Homogeneous Equation Linear Equations as Operators

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Linear Equations as Linear Operators

Let Y₁ and Y₂ be solutions of

$$a(t)y'' + b(t)y' + c(t)y = f(t)$$

$$L[Y_1 - Y_2] = L[Y_1] - L[Y_2] = f(t) - f(t) = 0.$$

• Hence

 $a(t)(Y_1 - Y_2)'' + b(t)(Y_1 - Y_2)' + c(t)(Y_1 - Y_2) = 0$

Associated Homogeneous Equation Linear Equations as Operators

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Linear Equations as Linear Operators

Let Y₁ and Y₂ be solutions of

$$a(t)y'' + b(t)y' + c(t)y = f(t)$$

$$L[Y_1 - Y_2] = L[Y_1] - L[Y_2] = f(t) - f(t) = 0.$$

• Hence

 $a(t)(Y_1 - Y_2)'' + b(t)(Y_1 - Y_2)' + c(t)(Y_1 - Y_2) = 0$

Associated Homogeneous Equation Linear Equations as Operators

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Linear Equations as Linear Operators

Let Y₁ and Y₂ be solutions of

$$a(t)y'' + b(t)y' + c(t)y = f(t)$$

$$L[Y_1 - Y_2] = L[Y_1] - L[Y_2] = f(t) - f(t) = 0.$$

• Hence

 $a(t)(Y_1 - Y_2)'' + b(t)(Y_1 - Y_2)' + c(t)(Y_1 - Y_2) = 0$

Associated Homogeneous Equation Linear Equations as Operators

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Linear Equations as Linear Operators

• Let Y₁ and Y₂ be solutions of

$$a(t)y'' + b(t)y' + c(t)y = f(t)$$

$$L[Y_1 - Y_2] = L[Y_1] - L[Y_2] = f(t) - f(t) = 0.$$

Hence

$$a(t)(Y_1 - Y_2)'' + b(t)(Y_1 - Y_2)' + c(t)(Y_1 - Y_2) = 0$$

Associated Homogeneous Equation Linear Equations as Operators

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Linear Equations as Linear Operators

• Let Y₁ and Y₂ be solutions of

$$a(t)y'' + b(t)y' + c(t)y = f(t)$$

$$L[Y_1 - Y_2] = L[Y_1] - L[Y_2] = f(t) - f(t) = 0.$$

Hence

$$a(t)(Y_1 - Y_2)'' + b(t)(Y_1 - Y_2)' + c(t)(Y_1 - Y_2) = 0$$

Associated Homogeneous Equation Linear Equations as Operators

Finding general solutions

• We have the following consequence of the previous theorem

Theorem

If *Y* is any solution to a nonhomogeneous linear equation, and y_1 and y_2 are (independent) solutions of the corresponding homogeneous linear equation, then the general solution to the nonhomogeneous equation is

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + Y(t)$$

- So how can we find the general solution to an inhomogeneous equation?
- Find the general solution to the homogeneous equation...
- and add to it any one *inhomogeneous* solution!

Associated Homogeneous Equation Linear Equations as Operators

Finding general solutions

• We have the following consequence of the previous theorem

Theorem

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + Y(t)$$

- So how can we find the general solution to an inhomogeneous equation?
- Find the general solution to the homogeneous equation...
- and add to it any one *inhomogeneous* solution!

Associated Homogeneous Equation Linear Equations as Operators

Finding general solutions

• We have the following consequence of the previous theorem

Theorem

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + Y(t)$$

- So how can we find the general solution to an inhomogeneous equation?
- Find the general solution to the homogeneous equation...
- and add to it any one *inhomogeneous* solution!

Associated Homogeneous Equation Linear Equations as Operators

Finding general solutions

• We have the following consequence of the previous theorem

Theorem

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + Y(t)$$

- So how can we find the general solution to an inhomogeneous equation?
- Find the general solution to the homogeneous equation...
- and add to it any one inhomogeneous solution!

Associated Homogeneous Equation Linear Equations as Operators

Finding general solutions

• We have the following consequence of the previous theorem

Theorem

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + Y(t)$$

- So how can we find the general solution to an inhomogeneous equation?
- Find the general solution to the homogeneous equation...
- and add to it any one inhomogeneous solution!

Associated Homogeneous Equation Linear Equations as Operators

Finding general solutions

• We have the following consequence of the previous theorem

Theorem

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + Y(t)$$

- So how can we find the general solution to an inhomogeneous equation?
- Find the general solution to the homogeneous equation...
- and add to it any one inhomogeneous solution!

A few good examples Try it Yourself

Outline

A First Look at Nonhomogeneous Equations

- Associated Homogeneous Equation
- Linear Equations as Operators

2 Example Lovefest

- A few good examples
- Try it Yourself

イロト イポト イヨト イヨト

ъ

A First Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 3e^{2t}$$
.

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

- The corresponding characteristic polynomial is $r^2 3r 4$, which has roots $r_1 = 4$ and $r_2 = -1$.
- Therefore the general solution to the homogeneous equation is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

A First Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 3e^{2t}$$
.

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

- The corresponding characteristic polynomial is $r^2 3r 4$, which has roots $r_1 = 4$ and $r_2 = -1$.
- Therefore the general solution to the homogeneous equation is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

A First Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 3e^{2t}$$
.

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

- The corresponding characteristic polynomial is $r^2 3r 4$, which has roots $r_1 = 4$ and $r_2 = -1$.
- Therefore the general solution to the homogeneous equation is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

A First Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 3e^{2t}$$
.

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

- The corresponding characteristic polynomial is $r^2 3r 4$, which has roots $r_1 = 4$ and $r_2 = -1$.
- Therefore the general solution to the homogeneous equation is

$$y_h = C_1 e^{4t} + C_2 e^{-t}$$
.

A First Example

- Now we need to try to find a *particular solution Y*(*t*) to the inhomogeneous equation
- How should we go about this?
- Try to guess a reasonable form for Y. We guess $Y(t) = Ae^{2t}$ for some constant A.
- Then $Y' = 2Ae^{2t}$ and $Y'' = 4Ae^{2t}$, so that

$$Y'' - 3Y' - 4Y = 4Ae^{2t} - 6Ae^{2t} - 4Ae^{2t} = -6Ae^{2t}.$$

- Since $Y'' 3Y' 4Y = 3e^{2t}$, this means A = -1/2, so that $Y(t) = -\frac{1}{2}e^{2t}$
- The general solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{1}{2} e^{2t}$$

<ロト <回 > < 注 > < 注 > 、

A First Example

- Now we need to try to find a *particular solution Y*(*t*) to the inhomogeneous equation
- How should we go about this?
- Try to guess a reasonable form for Y. We guess $Y(t) = Ae^{2t}$ for some constant A.
- Then $Y' = 2Ae^{2t}$ and $Y'' = 4Ae^{2t}$, so that

$$Y'' - 3Y' - 4Y = 4Ae^{2t} - 6Ae^{2t} - 4Ae^{2t} = -6Ae^{2t}.$$

- Since $Y'' 3Y' 4Y = 3e^{2t}$, this means A = -1/2, so that $Y(t) = -\frac{1}{2}e^{2t}$
- The general solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{1}{2} e^{2t}$$

ヘロト 人間 とくほとく ほとう

3

A First Example

- Now we need to try to find a *particular solution Y*(*t*) to the inhomogeneous equation
- How should we go about this?
- Try to guess a reasonable form for Y. We guess $Y(t) = Ae^{2t}$ for some constant A.
- Then $Y' = 2Ae^{2t}$ and $Y'' = 4Ae^{2t}$, so that

$$Y'' - 3Y' - 4Y = 4Ae^{2t} - 6Ae^{2t} - 4Ae^{2t} = -6Ae^{2t}.$$

- Since $Y'' 3Y' 4Y = 3e^{2t}$, this means A = -1/2, so that $Y(t) = -\frac{1}{2}e^{2t}$
- The general solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{1}{2} e^{2t}$$

<ロ> <同> <同> <同> <同> <同> <同> <

A First Example

- Now we need to try to find a *particular solution Y*(*t*) to the inhomogeneous equation
- How should we go about this?
- Try to guess a reasonable form for Y. We guess $Y(t) = Ae^{2t}$ for some constant A.
- Then $Y' = 2Ae^{2t}$ and $Y'' = 4Ae^{2t}$, so that

$$Y'' - 3Y' - 4Y = 4Ae^{2t} - 6Ae^{2t} - 4Ae^{2t} = -6Ae^{2t}.$$

- Since $Y'' 3Y' 4Y = 3e^{2t}$, this means A = -1/2, so that $Y(t) = -\frac{1}{2}e^{2t}$
- The general solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{1}{2} e^{2t}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A First Example

- Now we need to try to find a *particular solution Y*(*t*) to the inhomogeneous equation
- How should we go about this?
- Try to guess a reasonable form for Y. We guess $Y(t) = Ae^{2t}$ for some constant A.
- Then $Y' = 2Ae^{2t}$ and $Y'' = 4Ae^{2t}$, so that

$$Y'' - 3Y' - 4Y = 4Ae^{2t} - 6Ae^{2t} - 4Ae^{2t} = -6Ae^{2t}.$$

• Since $Y'' - 3Y' - 4Y = 3e^{2t}$, this means A = -1/2, so that $Y(t) = -\frac{1}{2}e^{2t}$

• The general solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{1}{2} e^{2t}$$

ヘロト ヘヨト ヘヨト ヘ

A First Example

- Now we need to try to find a *particular solution Y*(*t*) to the inhomogeneous equation
- How should we go about this?
- Try to guess a reasonable form for Y. We guess $Y(t) = Ae^{2t}$ for some constant A.
- Then $Y' = 2Ae^{2t}$ and $Y'' = 4Ae^{2t}$, so that

$$Y'' - 3Y' - 4Y = 4Ae^{2t} - 6Ae^{2t} - 4Ae^{2t} = -6Ae^{2t}.$$

• Since $Y'' - 3Y' - 4Y = 3e^{2t}$, this means A = -1/2, so that $Y(t) = -\frac{1}{2}e^{2t}$

• The general solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{1}{2} e^{2t}$$

A First Example

- Now we need to try to find a *particular solution Y*(*t*) to the inhomogeneous equation
- How should we go about this?
- Try to guess a reasonable form for Y. We guess $Y(t) = Ae^{2t}$ for some constant A.
- Then $Y' = 2Ae^{2t}$ and $Y'' = 4Ae^{2t}$, so that

$$Y'' - 3Y' - 4Y = 4Ae^{2t} - 6Ae^{2t} - 4Ae^{2t} = -6Ae^{2t}.$$

- Since $Y'' 3Y' 4Y = 3e^{2t}$, this means A = -1/2, so that $Y(t) = -\frac{1}{2}e^{2t}$
- The general solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{1}{2} e^{2t}.$$

A few good examples Try it Yourself

A Second Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 2\sin(t).$$

• First we find the general solution of the corresponding homogeneous equation

$$y'' - 3y' - 4y = 0.$$

• It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

イロト イポト イヨト イヨト

A few good examples Try it Yourself

A Second Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 2\sin(t).$$

 First we find the general solution of the corresponding homogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

イロト イポト イヨト イヨト

æ

A few good examples Try it Yourself

A Second Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 2\sin(t).$$

 First we find the general solution of the corresponding homogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

くロト (過) (目) (日)

ъ

A few good examples Try it Yourself

A Second Example

- What about a particular solution Y(t) ?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = 2e^{it}.$$

- We've replace y with \tilde{y} to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Im(\widetilde{Y})$ (the imaginary part of Y) then

$$Y'' - 3Y' - 4Y = \Im \widetilde{Y}'' - 3\Im \widetilde{Y}' - 4\Im \widetilde{Y}$$
$$= \Im (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Im (2e^{it}) = 2\sin(t)$$

・ロト ・回ト ・ヨト ・ヨト

A few good examples Try it Yourself

A Second Example

- What about a particular solution Y(t) ?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = 2e^{it}.$$

- We've replace y with \tilde{y} to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Im(\widetilde{Y})$ (the imaginary part of Y) then

$$Y'' - 3Y' - 4Y = \Im \widetilde{Y}'' - 3\Im \widetilde{Y}' - 4\Im \widetilde{Y}$$
$$= \Im (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Im (2e^{it}) = 2\sin(t)$$

◆□ > ◆□ > ◆豆 > ◆豆 > →

A few good examples Try it Yourself

A Second Example

- What about a particular solution Y(t) ?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = 2e^{it}.$$

- We've replace *y* with \tilde{y} to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Im(\widetilde{Y})$ (the imaginary part of Y) then

$$Y'' - 3Y' - 4Y = \Im \widetilde{Y}'' - 3\Im \widetilde{Y}' - 4\Im \widetilde{Y}$$
$$= \Im (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Im (2e^{it}) = 2\sin(t)$$

ヘロト 人間 とくほとくほとう

A Second Example

- What about a particular solution Y(t) ?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = 2e^{it}.$$

- We've replace y with y to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose Ỹ is a particular complex solution. If we define Y = ℑ(Ỹ) (the imaginary part of Y) then

$$Y'' - 3Y' - 4Y = \Im \widetilde{Y}'' - 3\Im \widetilde{Y}' - 4\Im \widetilde{Y}$$
$$= \Im (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Im (2e^{it}) = 2\sin(t)$$

ヘロト 人間 とくほとくほとう

A Second Example

- What about a particular solution Y(t) ?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = 2e^{it}.$$

- We've replace y with y to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose Ỹ is a particular complex solution. If we define Y = ℑ(Ỹ) (the imaginary part of Y) then

$$Y'' - 3Y' - 4Y = \Im \widetilde{Y}'' - 3\Im \widetilde{Y}' - 4\Im \widetilde{Y}$$
$$= \Im (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Im (2e^{it}) = 2\sin(t)$$

ヘロト 人間 とくほとくほとう

A Second Example

- What about a particular solution Y(t) ?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = 2e^{it}.$$

- We've replace y with y to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Im(\widetilde{Y})$ (the imaginary part of Y) then

$$Y'' - 3Y' - 4Y = \Im \widetilde{Y}'' - 3\Im \widetilde{Y}' - 4\Im \widetilde{Y}$$
$$= \Im (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Im (2e^{it}) = 2\sin(t)$$

くロト (過) (目) (日)

A Second Example

- So if we can find \widetilde{Y} and take its imaginary component, we get a particular solution to the original equation!
- How can we find a particular solution \tilde{Y} to the complex equation then?
- It again seems reasonable to try $\tilde{Y} = Ae^{it}$ for some undetermined constant A

• Then
$$\widetilde{Y}' = iAe^{it}$$
 and $\widetilde{Y}'' = -Ae^{it}$, so that

$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = -Ae^{2t} - 3iAe^{2t} - 4Ae^{2t} = (-5 - 3i)Ae^{2t}.$$

• Then since
$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = 2e^{-it}$$
, we must have $(-5 - 3i)A = 2$

ヘロト ヘワト ヘビト ヘビト

A few good examples Try it Yourself

A Second Example

- So if we can find Y and take its imaginary component, we get a particular solution to the original equation!
- How can we find a particular solution \widetilde{Y} to the complex equation then?
- It again seems reasonable to try $\tilde{Y} = Ae^{it}$ for some undetermined constant A

• Then
$$\widetilde{Y}' = iAe^{it}$$
 and $\widetilde{Y}'' = -Ae^{it}$, so that

$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = -Ae^{2t} - 3iAe^{2t} - 4Ae^{2t} = (-5 - 3i)Ae^{2t}.$$

• Then since
$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = 2e^{-it}$$
, we must have $(-5 - 3i)A = 2$

・ロット (雪) () () () ()

A Second Example

- So if we can find Y and take its imaginary component, we get a particular solution to the original equation!
- How can we find a particular solution \widetilde{Y} to the complex equation then?
- It again seems reasonable to try $\tilde{Y} = Ae^{it}$ for some undetermined constant A

• Then
$$\widetilde{Y}' = iAe^{it}$$
 and $\widetilde{Y}'' = -Ae^{it}$, so that

$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = -Ae^{2t} - 3iAe^{2t} - 4Ae^{2t} = (-5 - 3i)Ae^{2t}.$$

• Then since
$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = 2e^{-it}$$
, we must have $(-5 - 3i)A = 2$

くロト (過) (目) (日)

A Second Example

- So if we can find Y and take its imaginary component, we get a particular solution to the original equation!
- How can we find a particular solution \tilde{Y} to the complex equation then?
- It again seems reasonable to try $\widetilde{Y} = Ae^{it}$ for some undetermined constant A
- Then $\widetilde{Y}' = iAe^{it}$ and $\widetilde{Y}'' = -Ae^{it}$, so that

 $\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = -Ae^{2t} - 3iAe^{2t} - 4Ae^{2t} = (-5 - 3i)Ae^{2t}.$

• Then since $\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = 2e^{-it}$, we must have (-5 - 3i)A = 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A Second Example

- So if we can find Y and take its imaginary component, we get a particular solution to the original equation!
- How can we find a particular solution \widetilde{Y} to the complex equation then?
- It again seems reasonable to try $\widetilde{Y} = Ae^{it}$ for some undetermined constant A

• Then
$$\widetilde{Y}' = iAe^{it}$$
 and $\widetilde{Y}'' = -Ae^{it}$, so that

$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = -Ae^{2t} - 3iAe^{2t} - 4Ae^{2t} = (-5 - 3i)Ae^{2t}.$$

• Then since
$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = 2e^{-it}$$
, we must have $(-5 - 3i)A = 2$

ヘロト ヘアト ヘヨト ヘ

A Second Example

- So if we can find Y and take its imaginary component, we get a particular solution to the original equation!
- How can we find a particular solution \widetilde{Y} to the complex equation then?
- It again seems reasonable to try $\widetilde{Y} = Ae^{it}$ for some undetermined constant A

• Then
$$\widetilde{Y}' = iAe^{it}$$
 and $\widetilde{Y}'' = -Ae^{it}$, so that

$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = -Ae^{2t} - 3iAe^{2t} - 4Ae^{2t} = (-5 - 3i)Ae^{2t}$$

• Then since
$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = 2e^{-it}$$
, we must have $(-5 - 3i)A = 2$

ヘロト ヘアト ヘヨト ヘ

A few good examples Try it Yourself

A Second Example

• Dividing both sides by (-5 - 3i) we obtain

$$A = \frac{2}{-5-3i} = \frac{2}{-5-3i} \frac{-5+3i}{-5+3i} = \frac{-10+6i}{34} = \frac{-5}{17} + \frac{3}{17}i$$

• Putting this into our expression for \widetilde{Y} , we get

$$\widetilde{Y} = \left(\frac{-5}{17} + \frac{3}{17}i\right)e^{it} = \left(\frac{-5}{17} + \frac{3}{17}i\right)(\cos(t) + i\sin(t))$$
$$= \left(-\frac{5}{17} + \frac{3}{17}i\right)\cos(t) + \left(-\frac{3}{17} - \frac{5}{17}i\right)\sin(t)$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 990

A Second Example

• Dividing both sides by (-5 - 3i) we obtain

$$A = \frac{2}{-5-3i} = \frac{2}{-5-3i} \frac{-5+3i}{-5+3i} = \frac{-10+6i}{34} = \frac{-5}{17} + \frac{3}{17}i$$

• Putting this into our expression for \widetilde{Y} , we get

$$\widetilde{Y} = \left(\frac{-5}{17} + \frac{3}{17}i\right)e^{it} = \left(\frac{-5}{17} + \frac{3}{17}i\right)(\cos(t) + i\sin(t))$$
$$= \left(-\frac{5}{17} + \frac{3}{17}i\right)\cos(t) + \left(-\frac{3}{17} - \frac{5}{17}i\right)\sin(t)$$

・ロト ・ 理 ト ・ ヨ ト ・

= 990

A Second Example

• Dividing both sides by (-5 - 3i) we obtain

$$A = \frac{2}{-5-3i} = \frac{2}{-5-3i} \frac{-5+3i}{-5+3i} = \frac{-10+6i}{34} = \frac{-5}{17} + \frac{3}{17}i$$

• Putting this into our expression for \widetilde{Y} , we get

$$\widetilde{Y} = \left(\frac{-5}{17} + \frac{3}{17}i\right)e^{it} = \left(\frac{-5}{17} + \frac{3}{17}i\right)(\cos(t) + i\sin(t))$$
$$= \left(-\frac{5}{17} + \frac{3}{17}i\right)\cos(t) + \left(-\frac{3}{17} - \frac{5}{17}i\right)\sin(t)$$

・ロト ・ 理 ト ・ ヨ ト ・

3

A Second Example

- Our particular solution Y can then be found by taking the imaginary component of \widetilde{Y}
- Therefore we have our particular solution!

$$Y = \Im(\widetilde{Y}) = \frac{3}{17}\cos(t) - \frac{5}{17}\sin(t)$$

• General solution to the inhomogeneous equation is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} + \frac{3}{17} \cos(t) - \frac{5}{17} \sin(t)$$

くロト (過) (目) (日)

A few good examples Try it Yourself

A Second Example

- Our particular solution Y can then be found by taking the imaginary component of \widetilde{Y}
- Therefore we have our particular solution!

$$Y = \Im(\widetilde{Y}) = \frac{3}{17}\cos(t) - \frac{5}{17}\sin(t)$$

• General solution to the inhomogeneous equation is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} + \frac{3}{17} \cos(t) - \frac{5}{17} \sin(t)$$

・ロト ・聞 ト ・ ヨト ・ ヨトー

A Second Example

- Our particular solution Y can then be found by taking the imaginary component of \widetilde{Y}
- Therefore we have our particular solution!

$$Y = \Im(\widetilde{Y}) = \frac{3}{17}\cos(t) - \frac{5}{17}\sin(t)$$

• General solution to the inhomogeneous equation is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} + \frac{3}{17} \cos(t) - \frac{5}{17} \sin(t)$$

・ロト ・回 ト ・ ヨト ・ ヨトー

э

A Second Example

- Our particular solution Y can then be found by taking the imaginary component of \widetilde{Y}
- Therefore we have our particular solution!

$$Y = \Im(\widetilde{Y}) = \frac{3}{17}\cos(t) - \frac{5}{17}\sin(t)$$

• General solution to the inhomogeneous equation is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} + \frac{3}{17} \cos(t) - \frac{5}{17} \sin(t)$$

ヘロト ヘアト ヘビト ヘビト

3

A few good examples Try it Yourself

A Third Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 2\cos(t).$$

• First we find the general solution of the corresponding homogeneous equation

$$y'' - 3y' - 4y = 0.$$

• It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

イロト イポト イヨト イヨト

æ

A few good examples Try it Yourself

A Third Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 2\cos(t).$$

 First we find the general solution of the corresponding homogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

• It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

イロト イポト イヨト イヨト

э

A few good examples Try it Yourself

A Third Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 2\cos(t).$$

 First we find the general solution of the corresponding homogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

くロト (過) (目) (日)

э

- What about a particular solution Y(t)?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}''-3\widetilde{y}'-4\widetilde{y}=2e^{it}.$$

- We've replace y with \tilde{y} to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of Y) then

$$Y'' - 3Y' - 4Y = \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y}$$
$$= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Re (2e^{it}) = 2\cos(t)$$

- What about a particular solution Y(t)?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}''-3\widetilde{y}'-4\widetilde{y}=2e^{it}.$$

- We've replace y with \tilde{y} to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of Y) then

$$Y'' - 3Y' - 4Y = \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y}$$
$$= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Re (2e^{it}) = 2\cos(t)$$

- What about a particular solution Y(t)?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = 2e^{it}.$$

- We've replace y with \tilde{y} to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of *Y*) then

$$Y'' - 3Y' - 4Y = \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y}$$
$$= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Re (2e^{it}) = 2\cos(t)$$

A Third Example

- What about a particular solution Y(t)?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = 2e^{it}.$$

- We've replace y with y to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose Ỹ is a particular complex solution. If we define Y = ℜ(Ỹ) (the real part of Y) then

$$Y'' - 3Y' - 4Y = \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y}$$
$$= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Re (2e^{it}) = 2\cos(t)$$

1

- What about a particular solution Y(t)?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = 2e^{it}.$$

- We've replace y with \tilde{y} to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of Y) then

$$Y'' - 3Y' - 4Y = \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y}$$
$$= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Re (2e^{it}) = 2\cos(t)$$

A Third Example

- What about a particular solution Y(t)?
- A slick trick is to instead consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = 2e^{it}.$$

- We've replace y with y to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of Y) then

$$egin{aligned} \mathbf{Y}'' - \mathbf{3}\,\mathbf{Y}' - \mathbf{4}\,\mathbf{Y} &= \Re \widetilde{\mathbf{Y}}'' - \mathbf{3}\Re \widetilde{\mathbf{Y}}' - \mathbf{4}\Re \widetilde{\mathbf{Y}} \ &= \Re (\widetilde{\mathbf{Y}}'' - \mathbf{3}\,\widetilde{\mathbf{Y}}' - \mathbf{4}\,\widetilde{\mathbf{Y}}) \ &= \Re (\mathbf{2}e^{it}) = \mathbf{2}\cos(t) \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

A few good examples Try it Yourself

A Third Example

- So if we can find \hat{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution *Y* to the complex equation then?
- We did this already earlier! We found

$$\widetilde{Y} = \left(-\frac{5}{17} + \frac{3}{17}i\right)\cos(t) + \left(-\frac{3}{17} - \frac{5}{17}i\right)\sin(t)$$

• And therefore we have our particular solution!

$$Y = \Re(\widetilde{Y}) = -\frac{5}{17}\cos(t) - \frac{3}{17}\sin(t)$$

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{5}{17} \cos(t) - \frac{3}{17} \sin(t)$$

A Third Example

- So if we can find \tilde{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \tilde{Y} to the complex equation then?
- We did this already earlier! We found

$$\widetilde{Y} = \left(-\frac{5}{17} + \frac{3}{17}i\right)\cos(t) + \left(-\frac{3}{17} - \frac{5}{17}i\right)\sin(t)$$

• And therefore we have our particular solution!

$$Y = \Re(\widetilde{Y}) = -\frac{5}{17}\cos(t) - \frac{3}{17}\sin(t)$$

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{5}{17} \cos(t) - \frac{3}{17} \sin(t)$$

A Third Example

- So if we can find \tilde{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \tilde{Y} to the complex equation then?
- We did this already earlier! We found

$$\widetilde{Y} = \left(-\frac{5}{17} + \frac{3}{17}i\right)\cos(t) + \left(-\frac{3}{17} - \frac{5}{17}i\right)\sin(t)$$

• And therefore we have our particular solution!

$$Y = \Re(\widetilde{Y}) = -\frac{5}{17}\cos(t) - \frac{3}{17}\sin(t)$$

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{5}{17} \cos(t) - \frac{3}{17} \sin(t)$$

A Third Example

- So if we can find \tilde{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \tilde{Y} to the complex equation then?
- We did this already earlier! We found

$$\widetilde{Y} = \left(-\frac{5}{17} + \frac{3}{17}i\right)\cos(t) + \left(-\frac{3}{17} - \frac{5}{17}i\right)\sin(t)$$

• And therefore we have our particular solution!

$$Y = \Re(\widetilde{Y}) = -\frac{5}{17}\cos(t) - \frac{3}{17}\sin(t)$$

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{5}{17} \cos(t) - \frac{3}{17} \sin(t)$$

A Third Example

- So if we can find \tilde{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \tilde{Y} to the complex equation then?
- We did this already earlier! We found

$$\widetilde{Y} = \left(-\frac{5}{17} + \frac{3}{17}i\right)\cos(t) + \left(-\frac{3}{17} - \frac{5}{17}i\right)\sin(t)$$

• And therefore we have our particular solution!

$$Y = \Re(\widetilde{Y}) = -\frac{5}{17}\cos(t) - \frac{3}{17}\sin(t)$$

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{5}{17} \cos(t) - \frac{3}{17} \sin(t)$$

A Third Example

- So if we can find \tilde{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \tilde{Y} to the complex equation then?
- We did this already earlier! We found

$$\widetilde{Y} = \left(-\frac{5}{17} + \frac{3}{17}i\right)\cos(t) + \left(-\frac{3}{17} - \frac{5}{17}i\right)\sin(t)$$

• And therefore we have our particular solution!

$$Y = \Re(\widetilde{Y}) = -\frac{5}{17}\cos(t) - \frac{3}{17}\sin(t)$$

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{5}{17} \cos(t) - \frac{3}{17} \sin(t)$$

A few good examples Try it Yourself

A Fourth Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 3\cos(t) - 7\sin(t).$$

• First we find the general solution of the corresponding homogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

• It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

イロト イポト イヨト イヨト

A few good examples Try it Yourself

A Fourth Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 3\cos(t) - 7\sin(t).$$

 First we find the general solution of the corresponding homogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

• It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

イロト イポト イヨト イヨト

æ

A few good examples Try it Yourself

A Fourth Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = 3\cos(t) - 7\sin(t).$$

 First we find the general solution of the corresponding homogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

くロト (過) (目) (日)

э

A Fourth Example

• What about a particular solution?

• Let
$$L[y] = y'' - 3y' - 4y$$

• Earlier, we found functions Y_1 and Y_2 satisfying $L[Y_1] = 2\sin(t)$ and $L[Y_2] = 2\cos(t)$, namely

$$Y_{1} = \frac{3}{17}\cos(t) - \frac{5}{17}\sin(t)$$
$$Y_{2} = -\frac{5}{17}\cos(t) - \frac{3}{17}\sin(t)$$

ヘロン 人間 とくほ とくほ とう

= 990

A few good examples Try it Yourself

A Fourth Example

What about a particular solution?

• Let L[y] = y'' - 3y' - 4y

• Earlier, we found functions Y_1 and Y_2 satisfying $L[Y_1] = 2\sin(t)$ and $L[Y_2] = 2\cos(t)$, namely

$$Y_{1} = \frac{3}{17}\cos(t) - \frac{5}{17}\sin(t)$$
$$Y_{2} = -\frac{5}{17}\cos(t) - \frac{3}{17}\sin(t)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

A Fourth Example

What about a particular solution?

• Let
$$L[y] = y'' - 3y' - 4y$$

• Earlier, we found functions Y_1 and Y_2 satisfying $L[Y_1] = 2\sin(t)$ and $L[Y_2] = 2\cos(t)$, namely

$$Y_{1} = \frac{3}{17}\cos(t) - \frac{5}{17}\sin(t)$$
$$Y_{2} = -\frac{5}{17}\cos(t) - \frac{3}{17}\sin(t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

A Fourth Example

What about a particular solution?

• Let
$$L[y] = y'' - 3y' - 4y$$

• Earlier, we found functions Y_1 and Y_2 satisfying $L[Y_1] = 2\sin(t)$ and $L[Y_2] = 2\cos(t)$, namely

$$Y_1 = \frac{3}{17}\cos(t) - \frac{5}{17}\sin(t)$$
$$Y_2 = -\frac{5}{17}\cos(t) - \frac{3}{17}\sin(t)$$

ヘロン 人間 とくほ とくほ とう

= 990

A few good examples Try it Yourself

A Fourth Example

• Therefore, if we take
$$Y = \frac{-7}{2}Y_1 + \frac{3}{2}Y_2$$
, then

$$L[Y] = L\left[\frac{-7}{2}Y_1 + \frac{3}{2}Y_2\right] = \frac{-7}{2}L[Y_1] + \frac{3}{2}L[Y_2]$$
$$= \frac{-7}{2}(2\sin(t)) + \frac{3}{2}(2\cos(t)) = -7\sin(t) + 3\cos(t).$$

• This Y is a particular solution!

$$Y = \frac{-18}{17}\cos(t) + \frac{13}{17}\sin(t)$$

• General solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{18}{17} \cos(t) + \frac{13}{17} \sin(t)$$

A few good examples Try it Yourself

A Fourth Example

• Therefore, if we take $Y = \frac{-7}{2}Y_1 + \frac{3}{2}Y_2$, then

$$L[Y] = L\left[\frac{-7}{2}Y_1 + \frac{3}{2}Y_2\right] = \frac{-7}{2}L[Y_1] + \frac{3}{2}L[Y_2]$$
$$= \frac{-7}{2}(2\sin(t)) + \frac{3}{2}(2\cos(t)) = -7\sin(t) + 3\cos(t).$$

• This Y is a particular solution!

$$Y = \frac{-18}{17}\cos(t) + \frac{13}{17}\sin(t)$$

• General solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{18}{17} \cos(t) + \frac{13}{17} \sin(t)$$

= 990

A few good examples Try it Yourself

A Fourth Example

• Therefore, if we take
$$Y = \frac{-7}{2}Y_1 + \frac{3}{2}Y_2$$
, then

$$L[Y] = L\left[\frac{-7}{2}Y_1 + \frac{3}{2}Y_2\right] = \frac{-7}{2}L[Y_1] + \frac{3}{2}L[Y_2]$$

= $\frac{-7}{2}(2\sin(t)) + \frac{3}{2}(2\cos(t)) = -7\sin(t) + 3\cos(t).$

• This Y is a particular solution!

$$Y = \frac{-18}{17}\cos(t) + \frac{13}{17}\sin(t)$$

• General solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{18}{17} \cos(t) + \frac{13}{17} \sin(t)$$

ヘロン 人間 とくほ とくほ とう

∃ <2 <</p>

A few good examples Try it Yourself

A Fourth Example

• Therefore, if we take
$$Y = \frac{-7}{2}Y_1 + \frac{3}{2}Y_2$$
, then

$$L[Y] = L\left[\frac{-7}{2}Y_1 + \frac{3}{2}Y_2\right] = \frac{-7}{2}L[Y_1] + \frac{3}{2}L[Y_2]$$

= $\frac{-7}{2}(2\sin(t)) + \frac{3}{2}(2\cos(t)) = -7\sin(t) + 3\cos(t).$

• This Y is a particular solution!

$$Y = \frac{-18}{17}\cos(t) + \frac{13}{17}\sin(t)$$

• General solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{18}{17} \cos(t) + \frac{13}{17} \sin(t)$$

ヘロン 人間 とくほとく ほとう

A few good examples Try it Yourself

A Fourth Example

• Therefore, if we take $Y = \frac{-7}{2}Y_1 + \frac{3}{2}Y_2$, then

$$\begin{split} \mathcal{L}[Y] &= \mathcal{L}\left[\frac{-7}{2}Y_1 + \frac{3}{2}Y_2\right] = \frac{-7}{2}\mathcal{L}[Y_1] + \frac{3}{2}\mathcal{L}[Y_2] \\ &= \frac{-7}{2}(2\sin(t)) + \frac{3}{2}(2\cos(t)) = -7\sin(t) + 3\cos(t). \end{split}$$

• This Y is a particular solution!

$$Y = \frac{-18}{17}\cos(t) + \frac{13}{17}\sin(t)$$

General solution is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} - \frac{18}{17} \cos(t) + \frac{13}{17} \sin(t)$$

A Fifth Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = -8e^t \cos(2t).$$

• First we find the general solution of the corresponding homogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

• It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

イロト イポト イヨト イヨト

A Fifth Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = -8e^t \cos(2t).$$

 First we find the general solution of the corresponding homogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

• It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

イロト イポト イヨト イヨト

э

A Fifth Example

Example

Find the general solution of the equation

$$y'' - 3y' - 4y = -8e^t \cos(2t).$$

 First we find the general solution of the corresponding homogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=0.$$

It's the same as last time! The general solution is

$$y_h = C_1 e^{4t} + C_2 e^{-t}.$$

くロト (過) (目) (日)

э

A Fifth Example

- What about a particular solution?
- A slick trick is to consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = -8e^{(1+2i)t}.$$

- We've replace y with \tilde{y} to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of *Y*) then

$$Y'' - 3Y' - 4Y = \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y}$$
$$= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Re (-8e^{(1+2i)t}) = -8e^t \cos(2t)$$

A Fifth Example

• What about a particular solution?

• A slick trick is to consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = -8e^{(1+2i)t}.$$

- We've replace y with \tilde{y} to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of Y) then

$$Y'' - 3Y' - 4Y = \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y}$$
$$= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Re (-8e^{(1+2i)t}) = -8e^t \cos(2t)$$

A Fifth Example

- What about a particular solution?
- A slick trick is to consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = -8e^{(1+2i)t}.$$

- We've replace y with \tilde{y} to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of *Y*) then

$$Y'' - 3Y' - 4Y = \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y}$$
$$= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Re (-8e^{(1+2i)t}) = -8e^t \cos(2t)$$

- What about a particular solution?
- A slick trick is to consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = -8e^{(1+2i)t}.$$

- We've replace y with y to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of Y) then

$$Y'' - 3Y' - 4Y = \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y}$$
$$= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Re (-8e^{(1+2i)t}) = -8e^t \cos(2t)$$

- What about a particular solution?
- A slick trick is to consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = -8e^{(1+2i)t}.$$

- We've replace y with y to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of Y) then

$$Y'' - 3Y' - 4Y = \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y}$$
$$= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y})$$
$$= \Re (-8e^{(1+2i)t}) = -8e^t \cos(2t)$$

- What about a particular solution?
- A slick trick is to consider the complex equation

$$\widetilde{y}'' - 3\widetilde{y}' - 4\widetilde{y} = -8e^{(1+2i)t}.$$

- We've replace y with y to remind ourselves that its a new equation
- Why is this a good idea?
- Suppose \widetilde{Y} is a particular complex solution. If we define $Y = \Re(\widetilde{Y})$ (the real part of Y) then

$$\begin{aligned} Y'' - 3Y' - 4Y &= \Re \widetilde{Y}'' - 3\Re \widetilde{Y}' - 4\Re \widetilde{Y} \\ &= \Re (\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y}) \\ &= \Re (-8e^{(1+2i)t}) = -8e^t \cos(2t) \end{aligned}$$

A Fifth Example

- So if we can find \widetilde{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \widetilde{Y} to the complex equation then?
- It again seems reasonable to try $\widetilde{Y} = Ae^{(1+2i)t}$ for some undetermined constant A
- Then $\widetilde{Y}' = (1+2i)Ae^{it}$ and $\widetilde{Y}'' = (-3+4i)Ae^{it}$, so that

$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = (-3 + 4i)Ae^{2t} - 3(1 + 2i)Ae^{2t} - 4Ae^{2t}$$

= $(-10 - 2i)Ae^{2t}$

A Fifth Example

- So if we can find Y and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \widetilde{Y} to the complex equation then?
- It again seems reasonable to try $\widetilde{Y} = Ae^{(1+2i)t}$ for some undetermined constant A
- Then $\widetilde{Y}' = (1+2i)Ae^{it}$ and $\widetilde{Y}'' = (-3+4i)Ae^{it}$, so that

$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = (-3 + 4i)Ae^{2t} - 3(1 + 2i)Ae^{2t} - 4Ae^{2t}$$

= $(-10 - 2i)Ae^{2t}$

A Fifth Example

- So if we can find \tilde{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \widetilde{Y} to the complex equation then?
- It again seems reasonable to try $\widetilde{Y} = Ae^{(1+2i)t}$ for some undetermined constant A
- Then $\widetilde{Y}' = (1+2i)Ae^{it}$ and $\widetilde{Y}'' = (-3+4i)Ae^{it}$, so that

$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = (-3 + 4i)Ae^{2t} - 3(1 + 2i)Ae^{2t} - 4Ae^{2t}$$

= $(-10 - 2i)Ae^{2t}$

A Fifth Example

- So if we can find \tilde{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \widetilde{Y} to the complex equation then?
- It again seems reasonable to try $\widetilde{Y} = Ae^{(1+2i)t}$ for some undetermined constant A

• Then $\widetilde{Y}' = (1+2i)Ae^{it}$ and $\widetilde{Y}'' = (-3+4i)Ae^{it}$, so that

 $\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = (-3 + 4i)Ae^{2t} - 3(1 + 2i)Ae^{2t} - 4Ae^{2t}$ = $(-10 - 2i)Ae^{2t}$

A Fifth Example

- So if we can find \tilde{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \widetilde{Y} to the complex equation then?
- It again seems reasonable to try $\widetilde{Y} = Ae^{(1+2i)t}$ for some undetermined constant A
- Then $\widetilde{Y}' = (1+2i)Ae^{it}$ and $\widetilde{Y}'' = (-3+4i)Ae^{it}$, so that

$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = (-3 + 4i)Ae^{2t} - 3(1 + 2i)Ae^{2t} - 4Ae^{2t}$$
$$= (-10 - 2i)Ae^{2t}$$

- So if we can find \tilde{Y} and take its real component, we get a particular solution to the original equation!
- How can we find a particular solution \widetilde{Y} to the complex equation then?
- It again seems reasonable to try $\widetilde{Y} = Ae^{(1+2i)t}$ for some undetermined constant A
- Then $\widetilde{Y}' = (1+2i)Ae^{it}$ and $\widetilde{Y}'' = (-3+4i)Ae^{it}$, so that

$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = (-3 + 4i)Ae^{2t} - 3(1 + 2i)Ae^{2t} - 4Ae^{2t}$$
$$= (-10 - 2i)Ae^{2t}$$

• Then since
$$\widetilde{Y}'' - 3\widetilde{Y}' - 4\widetilde{Y} = -8e^{-(1+2i)t}$$
, we must have $(-10 - 2i)A = -8$

A Fifth Example

• Dividing both sides by (-8 - 2i) we obtain

$$A = \frac{-8}{-10 - 2i} = \frac{4}{5 + i} = \frac{4}{5 + i} \frac{5 - i}{5 - i} = \frac{20 - 4i}{26} = \frac{10}{13} - \frac{2}{13}i$$

• Putting this into our expression for \widetilde{Y} , we get

$$\widetilde{Y} = \left(\frac{10}{13} - \frac{2}{13}i\right) e^{(1+2i)t} = \left(\frac{10}{13} - \frac{2}{13}i\right) e^t(\cos(2t) + i\sin(2t)) \\ = \left(\frac{10}{13} - \frac{2}{13}i\right) e^t\cos(2t) + \left(\frac{2}{13} + \frac{10}{13}i\right) e^t\sin(2t)$$

・ロト ・ 理 ト ・ ヨ ト ・

∃ <2 <</p>

A Fifth Example

• Dividing both sides by (-8 - 2i) we obtain

$$A = \frac{-8}{-10 - 2i} = \frac{4}{5 + i} = \frac{4}{5 + i} \frac{5 - i}{5 - i} = \frac{20 - 4i}{26} = \frac{10}{13} - \frac{2}{13}i$$

• Putting this into our expression for \widetilde{Y} , we get

$$\widetilde{Y} = \left(\frac{10}{13} - \frac{2}{13}i\right) e^{(1+2i)t} = \left(\frac{10}{13} - \frac{2}{13}i\right) e^{t}(\cos(2t) + i\sin(2t)) \\ = \left(\frac{10}{13} - \frac{2}{13}i\right) e^{t}\cos(2t) + \left(\frac{2}{13} + \frac{10}{13}i\right) e^{t}\sin(2t)$$

・ロト ・ 理 ト ・ ヨ ト ・

3

A Fifth Example

• Dividing both sides by (-8 - 2i) we obtain

$$A = \frac{-8}{-10 - 2i} = \frac{4}{5 + i} = \frac{4}{5 + i} \frac{5 - i}{5 - i} = \frac{20 - 4i}{26} = \frac{10}{13} - \frac{2}{13}i$$

• Putting this into our expression for \widetilde{Y} , we get

$$\widetilde{Y} = \left(\frac{10}{13} - \frac{2}{13}i\right) e^{(1+2i)t} = \left(\frac{10}{13} - \frac{2}{13}i\right) e^t(\cos(2t) + i\sin(2t)) \\ = \left(\frac{10}{13} - \frac{2}{13}i\right) e^t\cos(2t) + \left(\frac{2}{13} + \frac{10}{13}i\right) e^t\sin(2t)$$

ヘロン ヘアン ヘビン ヘビン

= 990

A Fifth Example

- Our particular solution *Y* can then be found by taking the real component of \widetilde{Y}
- And therefore we have our particular solution!

$$Y = \Re(\widetilde{Y}) = \frac{10}{13}e^t\cos(2t) + \frac{2}{13}e^t\sin(2t)$$

• General solution to the inhomogeneous equation is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} + \frac{10}{13} e^t \cos(2t) + \frac{2}{13} e^t \sin(2t)$$

くロト (過) (目) (日)

A Fifth Example

- Our particular solution Y can then be found by taking the real component of Y
- And therefore we have our particular solution!

$$Y = \Re(\widetilde{Y}) = \frac{10}{13}e^t\cos(2t) + \frac{2}{13}e^t\sin(2t)$$

• General solution to the inhomogeneous equation is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} + \frac{10}{13} e^t \cos(2t) + \frac{2}{13} e^t \sin(2t)$$

くロト (過) (目) (日)

ъ

A Fifth Example

- Our particular solution Y can then be found by taking the real component of Y
- And therefore we have our particular solution!

$$Y = \Re(\widetilde{Y}) = \frac{10}{13}e^t\cos(2t) + \frac{2}{13}e^t\sin(2t)$$

• General solution to the inhomogeneous equation is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} + \frac{10}{13} e^t \cos(2t) + \frac{2}{13} e^t \sin(2t)$$

ヘロト 人間 ト ヘヨト ヘヨト

ъ

A Fifth Example

- Our particular solution Y can then be found by taking the real component of Y
- And therefore we have our particular solution!

$$Y = \Re(\widetilde{Y}) = \frac{10}{13}e^t\cos(2t) + \frac{2}{13}e^t\sin(2t)$$

• General solution to the inhomogeneous equation is then

$$y = y_h + Y = C_1 e^{4t} + C_2 e^{-t} + \frac{10}{13} e^t \cos(2t) + \frac{2}{13} e^t \sin(2t)$$

ヘロト ヘアト ヘビト ヘビト

3

A First Look at Nonhomogeneous Equations Example Lovefest A few good examples Try it Yourself

Outline

A First Look at Nonhomogeneous Equations

- Associated Homogeneous Equation
- Linear Equations as Operators

2 Example Lovefest

- A few good examples
- Try it Yourself

イロト イポト イヨト イヨト

ъ

Try It Yourself!

Find the general solutions of the following equations:

- $y'' 2y' 3y = 3e^{2t}$
- $y'' 2y' 3y = e^{-t}\sin(t)$
- $y'' 2y' 3y = e^{-t}\cos(t)$
- $y'' 2y' 3y = 2e^{2t} 3e^{-t}\cos(t) + 4e^{-t}\sin(t)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Try It Yourself!

Find the general solutions of the following equations:

•
$$y'' - 2y' - 3y = 3e^{2t}$$

•
$$y'' - 2y' - 3y = e^{-t}\sin(t)$$

•
$$y'' - 2y' - 3y = e^{-t}\cos(t)$$

•
$$y'' - 2y' - 3y = 2e^{2t} - 3e^{-t}\cos(t) + 4e^{-t}\sin(t)$$

ヘロト 人間 とくほとくほとう

₹ 990

Try It Yourself!

Find the general solutions of the following equations:

•
$$y'' - 2y' - 3y = 3e^{2t}$$

•
$$y'' - 2y' - 3y = e^{-t} \sin(t)$$

•
$$y'' - 2y' - 3y = e^{-t}\cos(t)$$

•
$$y'' - 2y' - 3y = 2e^{2t} - 3e^{-t}\cos(t) + 4e^{-t}\sin(t)$$

ヘロン 人間 とくほとく ほとう

∃ 𝒫𝔅

Try It Yourself!

Find the general solutions of the following equations:

•
$$y'' - 2y' - 3y = 3e^{2t}$$

•
$$y'' - 2y' - 3y = e^{-t}\sin(t)$$

•
$$y'' - 2y' - 3y = e^{-t}\cos(t)$$

•
$$y'' - 2y' - 3y = 2e^{2t} - 3e^{-t}\cos(t) + 4e^{-t}\sin(t)$$

ヘロト 人間 とくほとくほとう

₹ 990

Try It Yourself!

Find the general solutions of the following equations:

•
$$y'' - 2y' - 3y = 3e^{2t}$$

• $y'' - 2y' - 3y = e^{-t}\sin(t)$
• $y'' - 2y' - 3y = e^{-t}\cos(t)$
• $y'' - 2y' - 3y = 2e^{2t} - 3e^{-t}\cos(t) + 4e^{-t}\sin(t)$

ヘロト 人間 とくほとくほとう

₹ 990