Math 307 Lecture 14 Mechanical and Electrical Vibrations

W.R. Casper

Department of Mathematics University of Washington

May 8, 2014

Last time:

 Nonhomogeneous Equations and the Method of Undetermined Coefficients

This time

Mechanical and Electrical Vibrations

Next time:

Last time:

 Nonhomogeneous Equations and the Method of Undetermined Coefficients

This time:

Mechanical and Electrical Vibrations

Next time:

Last time:

 Nonhomogeneous Equations and the Method of Undetermined Coefficients

This time:

Mechanical and Electrical Vibrations

Next time

Last time:

 Nonhomogeneous Equations and the Method of Undetermined Coefficients

This time:

Mechanical and Electrical Vibrations

Next time:

Last time:

 Nonhomogeneous Equations and the Method of Undetermined Coefficients

This time:

Mechanical and Electrical Vibrations

Next time:

Last time:

 Nonhomogeneous Equations and the Method of Undetermined Coefficients

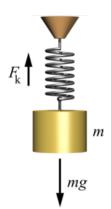
This time:

Mechanical and Electrical Vibrations

Next time:

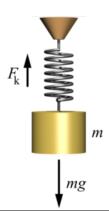
Outline

- Ideal Mass-Spring Systems
 - Ideal Mass-Spring System Basics
 - An Example
 - A Brief Interlude
- Damped Mass-Spring System
 - Damped Mass-Spring System Basics
 - An Example
 - Another Brief Interlude
- Try it Yourself!
 - Lots of Example Problems

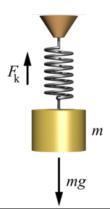


Outline

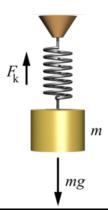
- Ideal Mass-Spring Systems
 - Ideal Mass-Spring System Basics
 - An Example
 - A Brief Interlude
- Damped Mass-Spring System
 - Damped Mass-Spring System Basics
 - An Example
 - Another Brief Interlude
- Try it Yourself!
 - Lots of Example Problems


Figure : A Mass Spring System

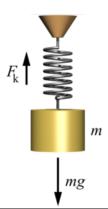
- A spring has natural resting length ℓ
- Attach a mass, stretches to length L
- Forces then balanced: $k(L \ell) = mg$
- We call L the resting length of the mass spring system.
- Now stretch the spring by an additional amount u
- Then length is L + u.


Figure : A Mass Spring System

- A spring has natural resting length ℓ
- Attach a mass, stretches to length L
- Forces then balanced: $k(L \ell) = mg$
- We call L the resting length of the mass spring system.
- Now stretch the spring by an additional amount u
- Then length is L + u.


Figure : A Mass Spring System

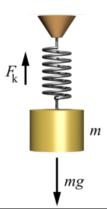
- A spring has natural resting length ℓ
- Attach a mass, stretches to length L
- Forces then balanced: $k(L \ell) = mg$
- We call L the resting length of the mass spring system.
- Now stretch the spring by an additional amount u
- Then length is L + u.


Figure : A Mass Spring System

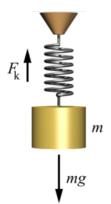
- A spring has natural resting length ℓ
- Attach a mass, stretches to length L
- Forces then balanced: $k(L \ell) = mg$
- We call L the resting length of the mass spring system.
- Now stretch the spring by an additional amount u
- Then length is L + u.

Figure : A Mass Spring System

- A spring has natural resting length ℓ
- Attach a mass, stretches to length L
- Forces then balanced: $k(L \ell) = mg$
- We call L the resting length of the mass spring system.
- Now stretch the spring by an additional amount u
- Then length is L + u.

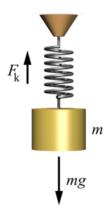

Figure : A Mass Spring System

- A spring has natural resting length ℓ
- Attach a mass, stretches to length L
- Forces then balanced: $k(L \ell) = mg$
- We call L the resting length of the mass spring system.
- Now stretch the spring by an additional amount u
- Then length is L + u.


Figure : A Mass Spring System

- A spring has natural resting length ℓ
- Attach a mass, stretches to length L
- Forces then balanced: $k(L \ell) = mg$
- We call L the resting length of the mass spring system.
- Now stretch the spring by an additional amount u
- Then length is L + u.

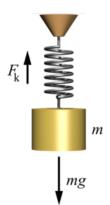
Figure : A Mass Spring System



- The forces on the spring are then F = F_{grav} + F_{spring}
- $F_{\text{grav}} = mg$
- $F_{\text{spring}} = -k(L + u \ell)$
- $F = mg k(L + u \ell)$
- Since $k(L \ell) = mg$, this means F = -ku.
- From Newton's law
 F = mu". Therefore u satisfies the equation

$$mu'' = -ku.$$

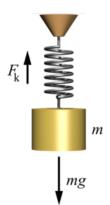
Figure : A Mass Spring System



- The forces on the spring are then F = F_{grav} + F_{spring}
- $F_{\text{grav}} = mg$
- $F_{\text{spring}} = -k(L + u \ell)$
- $\bullet \ F = mg k(L + u \ell)$
- Since $k(L \ell) = mg$, this means F = -ku.
- From Newton's law
 F = mu". Therefore u satisfies the equation

$$mu'' = -ku$$
.

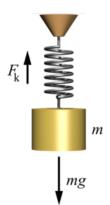
Figure : A Mass Spring System



- The forces on the spring are then F = F_{grav} + F_{spring}
- $F_{grav} = mg$
- $F_{\text{spring}} = -k(L + u \ell)$
- $F = mg k(L + u \ell)$
- Since $k(L \ell) = mg$, this means F = -ku.
- From Newton's law
 F = mu". Therefore u satisfies the equation

$$mu'' = -ku$$
.

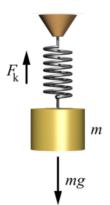
Figure : A Mass Spring System



- The forces on the spring are then F = F_{grav} + F_{spring}
- $F_{grav} = mg$
- $F_{\text{spring}} = -k(L + u \ell)$
- $\bullet \ F = mg k(L + u \ell)$
- Since $k(L \ell) = mg$, this means F = -ku.
- From Newton's law
 F = mu". Therefore u satisfies the equation

$$mu'' = -ku$$
.

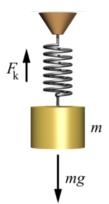
Figure : A Mass Spring System



- The forces on the spring are then F = F_{grav} + F_{spring}
- $F_{grav} = mg$
- $F_{\text{spring}} = -k(L + u \ell)$
- $F = mg k(L + u \ell)$
- Since $k(L \ell) = mg$, this means F = -ku.
- From Newton's law
 F = mu". Therefore u satisfies the equation

$$mu'' = -ku$$
.

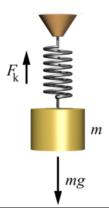
Figure : A Mass Spring System



- The forces on the spring are then F = F_{grav} + F_{spring}
- $F_{grav} = mg$
- $F_{\text{spring}} = -k(L + u \ell)$
- $F = mg k(L + u \ell)$
- Since $k(L \ell) = mg$, this means F = -ku.
- From Newton's law
 F = mu". Therefore u satisfies the equation

$$mu'' = -ku$$
.

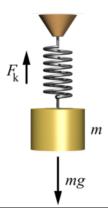
Figure : A Mass Spring System



- The forces on the spring are then F = F_{grav} + F_{spring}
- $F_{grav} = mg$
- $F_{\text{spring}} = -k(L + u \ell)$
- $F = mg k(L + u \ell)$
- Since $k(L \ell) = mg$, this means F = -ku.
- From Newton's law
 F = mu". Therefore u satisfies the equation

$$mu'' = -ku$$
.

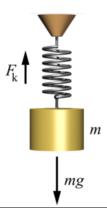
Figure : A Mass Spring System



- This is a second order linear homogeneous ODE with constant coefficents
- The corresponding characteristic equation has complex roots $\pm i \sqrt{\frac{k}{m}}$.
- The general solution is therefore of the form

$$u = A\cos(\omega t) + B\sin(\omega t),$$
 for $\omega = \sqrt{k/m}.$

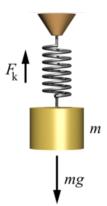
Figure : A Mass Spring System



- This is a second order linear homogeneous ODE with constant coefficents
- The corresponding characteristic equation has complex roots $\pm i \sqrt{\frac{k}{m}}$.
- The general solution is therefore of the form

$$u = A\cos(\omega t) + B\sin(\omega t),$$
 for $\omega = \sqrt{k/m}$.

Figure : A Mass Spring System



- This is a second order linear homogeneous ODE with constant coefficents
- The corresponding characteristic equation has complex roots $\pm i\sqrt{\frac{k}{m}}$.
- The general solution is therefore of the form

$$u = A\cos(\omega t) + B\sin(\omega t),$$
 for $\omega = \sqrt{k/m}.$

Figure : A Mass Spring System

- This is a second order linear homogeneous ODE with constant coefficents
- The corresponding characteristic equation has complex roots $\pm i\sqrt{\frac{k}{m}}$.
- The general solution is therefore of the form

$$u = A\cos(\omega t) + B\sin(\omega t),$$

for $\omega = \sqrt{k/m}.$

Outline

- Ideal Mass-Spring Systems
 - Ideal Mass-Spring System Basics
 - An Example
 - A Brief Interlude
- Damped Mass-Spring System
 - Damped Mass-Spring System Basics
 - An Example
 - Another Brief Interlude
- Try it Yourself!
 - Lots of Example Problems

Example

- We know that the mass m satisfies mg = 4lbs. Since $g \approx 32$ ft/s², it follows that $m = \frac{1}{8}$ lb·s²/ft.
- Also know $L \ell = 2$ inches = 1/6 ft.
- Need to find the spring constant. How can we?
- Balance of forces! $k(L-\ell) = mg$. So $k = \frac{4 \text{lbs}}{1/6 \text{ft}} = 24 \text{lbs/ft}$.

Example

- We know that the mass m satisfies mg = 4lbs. Since $g \approx 32$ ft/s², it follows that $m = \frac{1}{8}$ lb·s²/ft.
- Also know $L \ell = 2$ inches = 1/6 ft.
- Need to find the spring constant. How can we?
- Balance of forces! $k(L-\ell) = mg$. So $k = \frac{4 \text{lbs}}{1/6 \text{ft}} = 24 \text{lbs/ft}$.

Example

- We know that the mass m satisfies mg = 4lbs. Since $g \approx 32$ ft/s², it follows that $m = \frac{1}{8}$ lb·s²/ft.
- Also know $L \ell = 2$ inches = 1/6 ft.
- Need to find the spring constant. How can we?
- Balance of forces! $k(L-\ell) = mg$. So $k = \frac{4 \text{lbs}}{1/6 \text{ft}} = 24 \text{lbs/ft}$.

Example

- We know that the mass m satisfies mg = 4lbs. Since $g \approx 32$ ft/s², it follows that $m = \frac{1}{8}$ lb·s²/ft.
- Also know $L \ell = 2$ inches = 1/6 ft.
- Need to find the spring constant. How can we?
- Balance of forces! $k(L \ell) = mg$. So $k = \frac{4 \text{lbs}}{1/6 \text{ft}} = 24 \text{lbs/ft}$.

Example

- We know that the mass m satisfies mg = 4lbs. Since $g \approx 32$ ft/s², it follows that $m = \frac{1}{8}$ lb·s²/ft.
- Also know $L \ell = 2$ inches = 1/6 ft.
- Need to find the spring constant. How can we?
- Balance of forces! $k(L \ell) = mg$. So $k = \frac{4 \text{lbs}}{1/6 \text{ft}} = 24 \text{lbs/ft}$.

• Therefore *u* satisfies the equation

$$\frac{1}{8}u'' + 24u = 0$$

• The corresponding characteristic equation has complex roots $\pm i\sqrt{192}$, so the general solution is

$$u = A\cos(\sqrt{192}t) + B\sin(\sqrt{192}t).$$

- What is our initial condition?
- u(0) = 6 in = 1/2 ft. and u'(0) = 0 (released from rest)
- Therefore A = 1/2 and B = 0, so that $u = \cos(\sqrt{192}t)$.

• Therefore *u* satisfies the equation

$$\frac{1}{8}u''+24u=0$$

• The corresponding characteristic equation has complex roots $\pm i\sqrt{192}$, so the general solution is

$$u = A\cos(\sqrt{192}t) + B\sin(\sqrt{192}t).$$

- What is our initial condition?
- u(0) = 6 in = 1/2 ft. and u'(0) = 0 (released from rest)
- Therefore A = 1/2 and B = 0, so that $u = \cos(\sqrt{192}t)$.

Therefore u satisfies the equation

$$\frac{1}{8}u''+24u=0$$

• The corresponding characteristic equation has complex roots $\pm i\sqrt{192}$, so the general solution is

$$u = A\cos(\sqrt{192}t) + B\sin(\sqrt{192}t).$$

- What is our initial condition?
- u(0) = 6 in = 1/2 ft. and u'(0) = 0 (released from rest)
- Therefore A = 1/2 and B = 0, so that $u = \cos(\sqrt{192}t)$.

• Therefore *u* satisfies the equation

$$\frac{1}{8}u''+24u=0$$

• The corresponding characteristic equation has complex roots $\pm i\sqrt{192}$, so the general solution is

$$u = A\cos(\sqrt{192}t) + B\sin(\sqrt{192}t).$$

- What is our initial condition?
- u(0) = 6 in = 1/2 ft. and u'(0) = 0 (released from rest)
- Therefore A = 1/2 and B = 0, so that $u = \cos(\sqrt{192}t)$.

• Therefore *u* satisfies the equation

$$\frac{1}{8}u''+24u=0$$

• The corresponding characteristic equation has complex roots $\pm i\sqrt{192}$, so the general solution is

$$u = A\cos(\sqrt{192}t) + B\sin(\sqrt{192}t).$$

- What is our initial condition?
- u(0) = 6 in = 1/2 ft. and u'(0) = 0 (released from rest)
- Therefore A = 1/2 and B = 0, so that $u = \cos(\sqrt{192}t)$.

• Therefore *u* satisfies the equation

$$\frac{1}{8}u''+24u=0$$

• The corresponding characteristic equation has complex roots $\pm i\sqrt{192}$, so the general solution is

$$u = A\cos(\sqrt{192}t) + B\sin(\sqrt{192}t).$$

- What is our initial condition?
- u(0) = 6 in = 1/2 ft. and u'(0) = 0 (released from rest)
- Therefore A = 1/2 and B = 0, so that $u = \cos(\sqrt{192}t)$.

Outline

- Ideal Mass-Spring Systems
 - Ideal Mass-Spring System Basics
 - An Example
 - A Brief Interlude
- Damped Mass-Spring System
 - Damped Mass-Spring System Basics
 - An Example
 - Another Brief Interlude
- Try it Yourself!
 - Lots of Example Problems

 Often times in the next part, we'll be dealing with equations of the form

$$u = A\cos(\omega t) + B\sin(\omega t).$$

$$u = R\cos(\omega t - \delta)$$

- In this form, δ is called the *phase* or *phase angle*.
- Specifically $R = \sqrt{A^2 + B^2}$
- and also $\delta = \tan^{-1}(B/A)$

 Often times in the next part, we'll be dealing with equations of the form

$$u = A\cos(\omega t) + B\sin(\omega t).$$

$$u = R\cos(\omega t - \delta)$$

- In this form, δ is called the *phase* or *phase angle*.
- Specifically $R = \sqrt{A^2 + B^2}$
- and also $\delta = \tan^{-1}(B/A)$

 Often times in the next part, we'll be dealing with equations of the form

$$u = A\cos(\omega t) + B\sin(\omega t).$$

$$u = R\cos(\omega t - \delta)$$

- In this form, δ is called the *phase* or *phase angle*.
- Specifically $R = \sqrt{A^2 + B^2}$
- and also $\delta = \tan^{-1}(B/A)$

 Often times in the next part, we'll be dealing with equations of the form

$$u = A\cos(\omega t) + B\sin(\omega t).$$

$$u = R\cos(\omega t - \delta)$$

- In this form, δ is called the *phase* or *phase angle*.
- Specifically $R = \sqrt{A^2 + B^2}$
- and also $\delta = \tan^{-1}(B/A)$

 Often times in the next part, we'll be dealing with equations of the form

$$u = A\cos(\omega t) + B\sin(\omega t).$$

$$u = R\cos(\omega t - \delta)$$

- In this form, δ is called the *phase* or *phase angle*.
- Specifically $R = \sqrt{A^2 + B^2}$
- and also $\delta = \tan^{-1}(B/A)$

 Often times in the next part, we'll be dealing with equations of the form

$$u = A\cos(\omega t) + B\sin(\omega t).$$

$$u = R\cos(\omega t - \delta)$$

- In this form, δ is called the *phase* or *phase angle*.
- Specifically $R = \sqrt{A^2 + B^2}$
- and also $\delta = \tan^{-1}(B/A)$

$$mu'' + ku = 0,$$

- We call ω the *natural frequency*
- We call $2\pi/\omega$ the *period*
- We call R the amplitude
- We call δ the *phase*

$$mu'' + ku = 0$$
,

- We call ω the *natural frequency*
- We call $2\pi/\omega$ the *period*
- We call R the amplitude
- We call δ the phase

$$mu'' + ku = 0$$
,

- We call ω the *natural frequency*
- We call $2\pi/\omega$ the *period*
- We call R the amplitude
- We call δ the *phase*

$$mu'' + ku = 0$$
,

- We call ω the natural frequency
- We call $2\pi/\omega$ the *period*
- We call R the amplitude
- We call δ the phase

$$mu'' + ku = 0$$
,

- We call ω the natural frequency
- We call $2\pi/\omega$ the *period*
- We call R the amplitude
- We call δ the *phase*

$$mu'' + ku = 0$$
,

- We call ω the natural frequency
- We call $2\pi/\omega$ the *period*
- We call R the amplitude
- We call δ the phase

Outline

- Ideal Mass-Spring Systems
 - Ideal Mass-Spring System Basics
 - An Example
 - A Brief Interlude
- Damped Mass-Spring System
 - Damped Mass-Spring System Basics
 - An Example
 - Another Brief Interlude
- Try it Yourself!
 - Lots of Example Problems

Figure: Friction causes realistic mass-spring systems to be damped

- Real-world mass-spring systems are not ideal
- Real springs aren't ideal (can be rusty, noisy, etc) so oscillating mass slows down over time
- This adds an additional drag term to the force proportional to velocity u'
- $F_{\text{drag}} = -\gamma u'$
- Here γ is a constant, called the *damping constant*

Figure: Friction causes realistic mass-spring systems to be damped

Real-world mass-spring systems are not ideal

- Real springs aren't ideal (can be rusty, noisy, etc) so oscillating mass slows down over time
- This adds an additional drag term to the force proportional to velocity u'
- $F_{\text{drag}} = -\gamma u'$
- Here γ is a constant, called the damping constant

Figure: Friction causes realistic mass-spring systems to be damped

- Real-world mass-spring systems are not ideal
- Real springs aren't ideal (can be rusty, noisy, etc) so oscillating mass slows down over time
- This adds an additional drag term to the force proportional to velocity u'
- $F_{\text{drag}} = -\gamma u'$
- Here γ is a constant, called the *damping constant*

Figure: Friction causes realistic mass-spring systems to be damped

- Real-world mass-spring systems are not ideal
- Real springs aren't ideal (can be rusty, noisy, etc) so oscillating mass slows down over time
- This adds an additional drag term to the force proportional to velocity u'
- $F_{\text{drag}} = -\gamma u'$
- Here γ is a constant, called the *damping constant*

Figure: Friction causes realistic mass-spring systems to be damped

- Real-world mass-spring systems are not ideal
- Real springs aren't ideal (can be rusty, noisy, etc) so oscillating mass slows down over time
- This adds an additional drag term to the force proportional to velocity u'
- $F_{\text{drag}} = -\gamma u'$
- Here γ is a constant, called the *damping constant*

Figure: Friction causes realistic mass-spring systems to be damped

- Real-world mass-spring systems are not ideal
- Real springs aren't ideal (can be rusty, noisy, etc) so oscillating mass slows down over time
- This adds an additional drag term to the force proportional to velocity u'
- $F_{\text{drag}} = -\gamma u'$
- Here γ is a constant, called the *damping constant*

The equation of motion for an ideal spring is

$$mu'' + ku = 0.$$

$$mu'' + \gamma u' + ku = 0.$$

- m, k and γ are all nonnegative constants
- When $\gamma =$ 0, the motion is ideal

The equation of motion for an ideal spring is

$$mu'' + ku = 0.$$

$$mu'' + \gamma u' + ku = 0.$$

- m, k and γ are all nonnegative constants
- When $\gamma =$ 0, the motion is ideal

• The equation of motion for an ideal spring is

$$mu'' + ku = 0.$$

$$mu'' + \gamma u' + ku = 0.$$

- m, k and γ are all nonnegative constants
- When $\gamma =$ 0, the motion is ideal

• The equation of motion for an ideal spring is

$$mu'' + ku = 0.$$

$$mu'' + \gamma u' + ku = 0.$$

- m, k and γ are all nonnegative constants
- When $\gamma = 0$, the motion is ideal

• The equation of motion for an ideal spring is

$$mu'' + ku = 0.$$

$$mu'' + \gamma u' + ku = 0.$$

- m, k and γ are all nonnegative constants
- When $\gamma = 0$, the motion is ideal

Outline

- Ideal Mass-Spring Systems
 - Ideal Mass-Spring System Basics
 - An Example
 - A Brief Interlude
- Damped Mass-Spring System
 - Damped Mass-Spring System Basics
 - An Example
 - Another Brief Interlude
- Try it Yourself!
 - Lots of Example Problems

Example

Suppose that a mass spring system has spring constant k=1 lbs/ft, mass m=1 lb·s²/ft and damping constant $\gamma=0.125$ lb·s/ft. If initially the spring is stretched 2 feet and then released, determine the position u of the mass relative to its resting position as a function of time.

• *u* is determined by the initial value problem

$$u'' + 0.125u' + u = 0, \ u(0) = 2, \ u'(0) = 0$$

• The roots of the characteristic polynomial are $\frac{-1}{16} \pm \frac{\sqrt{255}}{16}$.

Example

Suppose that a mass spring system has spring constant k=1 lbs/ft, mass m=1 lb·s²/ft and damping constant $\gamma=0.125$ lb·s/ft. If initially the spring is stretched 2 feet and then released, determine the position u of the mass relative to its resting position as a function of time.

• *u* is determined by the initial value problem

$$u'' + 0.125u' + u = 0$$
, $u(0) = 2$, $u'(0) = 0$

 \bullet The roots of the characteristic polynomial are $\frac{-1}{16}\pm\frac{\sqrt{255}}{16}$

Example

Suppose that a mass spring system has spring constant k=1 lbs/ft, mass m=1 lb·s²/ft and damping constant $\gamma=0.125$ lb·s/ft. If initially the spring is stretched 2 feet and then released, determine the position u of the mass relative to its resting position as a function of time.

• *u* is determined by the initial value problem

$$u'' + 0.125u' + u = 0$$
, $u(0) = 2$, $u'(0) = 0$

• The roots of the characteristic polynomial are $\frac{-1}{16} \pm \frac{\sqrt{255}}{16}$.

This means that the general solution is

$$u = e^{-t/16} \left[A \cos \left(\frac{255}{16} t \right) + B \sin \left(\frac{255}{16} t \right) \right]$$

- To satisfy the initial conditions, we must choose A=2 and $B=2/\sqrt{255}$
- Then the solution of the initial value problem is

$$u = e^{-t/16} \left[2\cos\left(\frac{255}{16}t\right) + \frac{2}{\sqrt{255}}\sin\left(\frac{255}{16}t\right) \right]$$

• This means that the general solution is

$$u = e^{-t/16} \left[A \cos \left(\frac{255}{16} t \right) + B \sin \left(\frac{255}{16} t \right) \right].$$

- To satisfy the initial conditions, we must choose A=2 and $B=2/\sqrt{255}$
- Then the solution of the initial value problem is

$$u = e^{-t/16} \left[2\cos\left(\frac{255}{16}t\right) + \frac{2}{\sqrt{255}}\sin\left(\frac{255}{16}t\right) \right].$$

• This means that the general solution is

$$u = e^{-t/16} \left[A \cos \left(\frac{255}{16} t \right) + B \sin \left(\frac{255}{16} t \right) \right].$$

- To satisfy the initial conditions, we must choose A=2 and $B=2/\sqrt{255}$
- Then the solution of the initial value problem is

$$u = e^{-t/16} \left[2\cos\left(\frac{255}{16}t\right) + \frac{2}{\sqrt{255}}\sin\left(\frac{255}{16}t\right) \right].$$

• This means that the general solution is

$$u = e^{-t/16} \left[A \cos \left(\frac{255}{16} t \right) + B \sin \left(\frac{255}{16} t \right) \right].$$

- To satisfy the initial conditions, we must choose A=2 and $B=2/\sqrt{255}$
- Then the solution of the initial value problem is

$$u = e^{-t/16} \left[2\cos\left(\frac{255}{16}t\right) + \frac{2}{\sqrt{255}}\sin\left(\frac{255}{16}t\right) \right].$$

$$u = \frac{32}{\sqrt{255}}e^{-t/16}\cos\left(\frac{\sqrt{255}}{16}t - \delta\right)$$

- where $\delta = \tan^{-1} \frac{1}{\sqrt{255}} \approx 0.0625$
- Compare this solution to the solution we'd get without damping ($\gamma = 0$). The undamped solution would have been

$$u = 2\cos(t)$$

$$u = \frac{32}{\sqrt{255}}e^{-t/16}\cos\left(\frac{\sqrt{255}}{16}t - \delta\right)$$

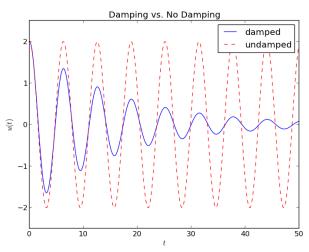
- where $\delta = \tan^{-1} \frac{1}{\sqrt{255}} \approx 0.0625$
- Compare this solution to the solution we'd get without damping ($\gamma = 0$). The undamped solution would have been

$$u = 2\cos(t)$$

$$u = \frac{32}{\sqrt{255}}e^{-t/16}\cos\left(\frac{\sqrt{255}}{16}t - \delta\right)$$

- where $\delta = \tan^{-1} \frac{1}{\sqrt{255}} \approx 0.0625$
- Compare this solution to the solution we'd get without damping ($\gamma = 0$). The undamped solution would have been

$$u = 2\cos(t)$$
.



$$u = \frac{32}{\sqrt{255}}e^{-t/16}\cos\left(\frac{\sqrt{255}}{16}t - \delta\right)$$

- where $\delta = \tan^{-1} \frac{1}{\sqrt{255}} \approx 0.0625$
- Compare this solution to the solution we'd get without damping ($\gamma = 0$). The undamped solution would have been

$$u = 2\cos(t)$$
.

Outline

- Ideal Mass-Spring Systems
 - Ideal Mass-Spring System Basics
 - An Example
 - A Brief Interlude
- Damped Mass-Spring System
 - Damped Mass-Spring System Basics
 - An Example
 - Another Brief Interlude
- Try it Yourself!
 - Lots of Example Problems

• Unless the system is *overdamped* (meaning $\gamma \geq 2\sqrt{km}$, ie. lots of damping), the solution of the damped spring equation

$$mu'' + \gamma u' + ku = 0,$$

will be

$$\mathsf{R}\mathsf{e}^{-\gamma t/2m} \cos(\mu t - \delta)$$

- We call μ the *quasi-frequency* (for small γ , close to undamped frequency)
- We call $2\pi/\mu$ the *quasi-period* (equal to the time between successive maxima or successive minima)

• Unless the system is *overdamped* (meaning $\gamma \geq 2\sqrt{km}$, ie. lots of damping), the solution of the damped spring equation

$$mu'' + \gamma u' + ku = 0,$$

will be

$$Re^{-\gamma t/2m}\cos(\mu t - \delta)$$

- We call μ the *quasi-frequency* (for small γ , close to undamped frequency)
- We call $2\pi/\mu$ the *quasi-period* (equal to the time between successive maxima or successive minima)

• Unless the system is *overdamped* (meaning $\gamma \geq 2\sqrt{km}$, ie. lots of damping), the solution of the damped spring equation

$$mu'' + \gamma u' + ku = 0,$$

will be

$$Re^{-\gamma t/2m}\cos(\mu t - \delta)$$

- We call μ the *quasi-frequency* (for small γ , close to undamped frequency)
- We call $2\pi/\mu$ the *quasi-period* (equal to the time between successive maxima or successive minima)

• Unless the system is *overdamped* (meaning $\gamma \geq 2\sqrt{km}$, ie. lots of damping), the solution of the damped spring equation

$$mu'' + \gamma u' + ku = 0,$$

will be

$$Re^{-\gamma t/2m}\cos(\mu t - \delta)$$

- We call μ the *quasi-frequency* (for small γ , close to undamped frequency)
- We call $2\pi/\mu$ the *quasi-period* (equal to the time between successive maxima or successive minima)

Outline

- Ideal Mass-Spring Systems
 - Ideal Mass-Spring System Basics
 - An Example
 - A Brief Interlude
- Damped Mass-Spring System
 - Damped Mass-Spring System Basics
 - An Example
 - Another Brief Interlude
- Try it Yourself!
 - Lots of Example Problems

Example Problem!

Example

A mass weighing 2 lb stretches a spring 6 inches. If the mass is pulled down an additional 2 inches and then released, and if there is no damping, determine the position u of the mass at any time t. Find the frequency, period, and amplitude of the motion.

Example Problem!

Example

A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s, and if there is no damping, determine the position u of the mass at any time t. When does the mass first return to its equilibrium position?

Example Problem!

Example

A spring is stretched 10 cm by a force of 3 Newtons. A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 Newtons when the velocity of the mass is 5 m/s. If the mass is pulled down 5 cm below its equilibrium position and given an initial downward velocity of 10 cm/s, determine its position u at any time t. Find the quasifrequency μ and the ration of μ to the natural frequency of the corresponding undamped motion.

Today:

Mass-spring systems

Next time

Today:

Mass-spring systems

Next time

Today:

Mass-spring systems

Next time:

Today:

Mass-spring systems

Next time: