Math 307 Quiz 5

May 18, 2014

Problem 1. Find the general solution to the differential equation

$$y'' - 2y' + y = 3e^{i}$$

Solution 1. The corresponding homogeneous equation is

$$y_h'' - 2y_h' + y_h = 0.$$

The characteristic polynomial of this equation is $z^2 - 2z + 1$, which factors as $(z - 1)^2$. Therefore the general solution is

$$y_h = (C_1 t + C_2)e^t.$$

The particular solution that we'd usually try for the forcing function $3e^t$ is $y_p = Ae^t$. However, since 1 is a root of the characteristic polynomial, with multiplicity 2, we will instead try

$$y_p = At^2 e^t$$
.

We then calculate

$$y'_p = (At^2 + 2At)e^t$$
$$y''_p = (At^2 + 4At + 2A)e^t$$

so that

$$y_p'' - 2y_p' + y_p = 2Ae^t.$$

Therefore for y_p to be a particular solution to our original equation, we should take A = 3/2. Thus a particular solution is $y_p = (3/2)t^2e^t$ and our general solution is

$$y = y_h + y_p = (C_1 t + C_2)e^t + \frac{3}{2}t^2e^t.$$

Problem 2. Consider the differential equation

(*)
$$y'' - 2y' + y = 3e^t \sin(2t).$$

Suppose that \widetilde{y}_p is a particular solution to the differential equation

$$\widetilde{y}'' - 2\widetilde{y}' + \widetilde{y} = 3e^a$$

for what value of a is $y_p = \text{Im}(\widetilde{y}_p)$ a particular solution to (*)?

Solution 2. Take a = 1 + 2i.

Problem 3. Find a particular solution to the differential equation

$$y'' - 2y' + y = 3e^t \sin(2t).$$

Solution 3. As pointed out in Problem 2, a particular solution y_p to the equation

$$y_p'' - 2y_p' + y_p = 3e^t \sin(2t).$$

may be found by taking the imaginary part of a particular solution \widetilde{y}_p to the equation

$$\widetilde{y}_p'' - 2\widetilde{y}_p' + \widetilde{y}_p = 3e^{(1+2i)t}$$

The method of undetermined coefficients tells us to try a particular solution of the form

$$\widetilde{y}_p = Ae^{(1+2i)t}$$

We then calculate

$$\widetilde{y}'_p = (1+2i)Ae^{(1+2i)t}$$

and

$$\widetilde{y}_p'' = (1+2i)^2 A e^{(1+2i)t} = (-3+4i) A e^{(1+2i)t}.$$

so that

$$\widetilde{y}_p'' - 2\widetilde{y}_p' + \widetilde{y}_p = -4Ae^{(1+2i)t}$$

Therefore for \tilde{y}_p to be a particular solution to the squiggly equation, we should take A = -3/4. Thus

$$\widetilde{y}_{p} = \frac{-3}{4}e^{(3+2i)t} = \frac{-3}{4}e^{t}e^{2it} = \frac{-3}{4}e^{t}\cos(2t) - i\frac{3}{4}\sin(2t)$$

Therefore a particular solution y_p to the original equation is given by

$$y_p = \operatorname{Im}(\widetilde{y}_p) = -\frac{3}{4}e^t \sin(2t).$$

Problem 4. Find a particular solution to the differential equation

$$y'' - 2y' + y = 4e^t \sin(2t) + 5e^t \cos(2t)$$

Solution 4. Let \tilde{y}_p be the function found in the solution to the previous problem. Then \tilde{y}_p is a solution to

$$\widetilde{y}_p'' - 2\widetilde{y}_p' + \widetilde{y}_p = 3e^{(1+2i)t}.$$

Therefore $(4/3)\tilde{y}_p$ is a solution to

$$\widetilde{y}_p'' - 2\widetilde{y}_p' + \widetilde{y}_p = 4e^{(1+2i)t},$$

so that $y_1 = \operatorname{Im}((4/3)\widetilde{y}_p)$ is a solution to

$$y_1'' - 2y_1' + y_1 = 4e^t \sin(2t).$$

Similarly $(5/3)\tilde{y}_p$ is a solution to

$$\widetilde{y}_p'' - 2\widetilde{y}_p' + \widetilde{y}_p = 5e^{(1+2i)t},$$

so that $y_2 = \operatorname{Re}((5/3)\widetilde{y}_p)$ is a solution to

$$y_1'' - 2y_1' + y_1 = 5e^t \cos(2t).$$

It follows that $y_p = y_1 + y_2$ is a solution to

$$y_p'' - 2y_p' + y_p = 4e^t \sin(2t) + 5e^t \cos(2t).$$

In summary, the particular solution we are looking for is

$$y_p = \frac{4}{3} \operatorname{Im}(\widetilde{y}_p) + \frac{5}{3} \operatorname{Re}(\widetilde{y}_p) = -e^t \sin(2t) - \frac{5}{4} e^t \cos(2t).$$