Math 307 Lecture 17 Forced Vibrations

W.R. Casper

Department of Mathematics University of Washington

May 14, 2014

Last time:

More on Mechanical and Electrical Vibrations

This time:

Forced vibrations

Next time:

Last time:

More on Mechanical and Electrical Vibrations

This time:

Forced vibrations

Next time

Last time:

More on Mechanical and Electrical Vibrations

This time:

Forced vibrations

Next time

Last time:

More on Mechanical and Electrical Vibrations

This time:

Forced vibrations

Next time

Last time:

More on Mechanical and Electrical Vibrations

This time:

Forced vibrations

Next time:

Last time:

More on Mechanical and Electrical Vibrations

This time:

Forced vibrations

Next time:

Outline

- Forced Vibrations Introduction
 - First Examples
 - Alternating Current and LCR Circuits
- Forced Vibration Example
 - LCR Circuit Specific Example
 - DC Case
 - AC Case

Outline

- Forced Vibrations Introduction
 - First Examples
 - Alternating Current and LCR Circuits
- Porced Vibration Example
 - LCR Circuit Specific Example
 - DC Case
 - AC Case

$$ay'' + by' + cy = R\cos(\omega t).$$

- where a, b, c are positive constants
- Intuitively, we should think about a spring with an external periodic force applied.
- What solutions look like depend very strongly on the values of a, b, c, R, and ω
- Today we will look at behavior when b > 0
- Later we will study separately the case when b = 0

$$ay'' + by' + cy = R\cos(\omega t).$$

- where a, b, c are positive constants
- Intuitively, we should think about a spring with an external periodic force applied.
- What solutions look like depend very strongly on the values of a, b, c, R, and ω
- Today we will look at behavior when b > 0
- Later we will study separately the case when b = 0

$$ay'' + by' + cy = R\cos(\omega t).$$

- where a, b, c are positive constants
- Intuitively, we should think about a spring with an external periodic force applied.
- What solutions look like depend very strongly on the values of a, b, c, R, and ω
- Today we will look at behavior when b > 0
- Later we will study separately the case when b = 0

$$ay'' + by' + cy = R\cos(\omega t).$$

- where a, b, c are positive constants
- Intuitively, we should think about a spring with an external periodic force applied.
- What solutions look like depend very strongly on the values of a, b, c, R, and ω
- Today we will look at behavior when b > 0
- Later we will study separately the case when b = 0

$$ay'' + by' + cy = R\cos(\omega t).$$

- where a, b, c are positive constants
- Intuitively, we should think about a spring with an external periodic force applied.
- What solutions look like depend very strongly on the values of a, b, c, R, and ω
- Today we will look at behavior when b > 0
- Later we will study separately the case when b = 0

$$ay'' + by' + cy = R\cos(\omega t).$$

- where a, b, c are positive constants
- Intuitively, we should think about a spring with an external periodic force applied.
- What solutions look like depend very strongly on the values of a, b, c, R, and ω
- Today we will look at behavior when b > 0
- Later we will study separately the case when b = 0

$$ay'' + by' + cy = R\cos(\omega t).$$

- where a, b, c are positive constants
- Intuitively, we should think about a spring with an external periodic force applied.
- What solutions look like depend very strongly on the values of a, b, c, R, and ω
- Today we will look at behavior when b > 0
- Later we will study separately the case when b = 0

- Forced vibrations occur naturally all the time!
- For example one could think of
 - A mass-spring system, with an external force applied
 - A LCR-circuit, where the voltage input E(t) is not constant
- What does forced vibration look like in comparison to unforced vibration?
- How does forced vibration behave at large timescales?

- Forced vibrations occur naturally all the time!
- For example one could think of
 - A mass-spring system, with an external force applied
 - A LCR-circuit, where the voltage input E(t) is not constant
- What does forced vibration look like in comparison to unforced vibration?
- How does forced vibration behave at large timescales?

- Forced vibrations occur naturally all the time!
- For example one could think of
 - A mass-spring system, with an external force applied
 - A LCR-circuit, where the voltage input E(t) is not constant
- What does forced vibration look like in comparison to unforced vibration?
- How does forced vibration behave at large timescales?

- Forced vibrations occur naturally all the time!
- For example one could think of
 - A mass-spring system, with an external force applied
 - A LCR-circuit, where the voltage input E(t) is not constant
- What does forced vibration look like in comparison to unforced vibration?
- How does forced vibration behave at large timescales?

- Forced vibrations occur naturally all the time!
- For example one could think of
 - A mass-spring system, with an external force applied
 - A LCR-circuit, where the voltage input E(t) is not constant
- What does forced vibration look like in comparison to unforced vibration?
- How does forced vibration behave at large timescales?

- Forced vibrations occur naturally all the time!
- For example one could think of
 - A mass-spring system, with an external force applied
 - A LCR-circuit, where the voltage input E(t) is not constant
- What does forced vibration look like in comparison to unforced vibration?
- How does forced vibration behave at large timescales?

- Forced vibrations occur naturally all the time!
- For example one could think of
 - A mass-spring system, with an external force applied
 - A LCR-circuit, where the voltage input E(t) is not constant
- What does forced vibration look like in comparison to unforced vibration?
- How does forced vibration behave at large timescales?

- Forced vibrations occur naturally all the time!
- For example one could think of
 - A mass-spring system, with an external force applied
 - A LCR-circuit, where the voltage input E(t) is not constant
- What does forced vibration look like in comparison to unforced vibration?
- How does forced vibration behave at large timescales?

Outline

- Forced Vibrations Introduction
 - First Examples
 - Alternating Current and LCR Circuits
- 2 Forced Vibration Example
 - LCR Circuit Specific Example
 - DC Case
 - AC Case

$$LI'' + RI' + I/C = E'(t)$$

- where here E(t) is the voltage input into the LCR circuit by some power source
- power source could be a battery, or similar device
- could also be power from an electrical outlet or a motor with or without an alternator

$$LI'' + RI' + I/C = E'(t)$$

- where here E(t) is the voltage input into the LCR circuit by some power source
- power source could be a battery, or similar device
- could also be power from an electrical outlet or a motor with or without an alternator

$$LI'' + RI' + I/C = E'(t)$$

- where here E(t) is the voltage input into the LCR circuit by some power source
- power source could be a battery, or similar device
- could also be power from an electrical outlet or a motor with or without an alternator

$$LI'' + RI' + I/C = E'(t)$$

- where here E(t) is the voltage input into the LCR circuit by some power source
- power source could be a battery, or similar device
- could also be power from an electrical outlet or a motor with or without an alternator

$$LI'' + RI' + I/C = E'(t)$$

- where here E(t) is the voltage input into the LCR circuit by some power source
- power source could be a battery, or similar device
- could also be power from an electrical outlet or a motor with or without an alternator

- Suppose that our voltage source is V_0 volts
- Depending on the kind of source, this may mean two different things
- If the source is a battery, then the voltage is *direct* and $E(t) = V_0$, so that E'(t) = 0
- If the source is a wall outlet or alternator, the voltage is alternating
- In this case V_0 typically refers to the *rms voltage*, so that the true voltage input is $E(t) = \sqrt{2}V_0\sin(\omega t)$, where ω is the electrical angular frequency of the power source
- For wall outlets in the U.S.A., $\omega/2\pi=60~{\rm Hz}$

- Suppose that our voltage source is V_0 volts
- Depending on the kind of source, this may mean two different things
- If the source is a battery, then the voltage is *direct* and $E(t) = V_0$, so that E'(t) = 0
- If the source is a wall outlet or alternator, the voltage is alternating
- In this case V_0 typically refers to the *rms voltage*, so that the true voltage input is $E(t) = \sqrt{2}V_0\sin(\omega t)$, where ω is the electrical angular frequency of the power source
- For wall outlets in the U.S.A., $\omega/2\pi=60~{\rm Hz}$

- Suppose that our voltage source is V_0 volts
- Depending on the kind of source, this may mean two different things
- If the source is a battery, then the voltage is *direct* and $E(t) = V_0$, so that E'(t) = 0
- If the source is a wall outlet or alternator, the voltage is alternating
- In this case V_0 typically refers to the *rms voltage*, so that the true voltage input is $E(t) = \sqrt{2}V_0\sin(\omega t)$, where ω is the electrical angular frequency of the power source
- For wall outlets in the U.S.A., $\omega/2\pi=60~{\rm Hz}$

- Suppose that our voltage source is V_0 volts
- Depending on the kind of source, this may mean two different things
- If the source is a battery, then the voltage is *direct* and $E(t) = V_0$, so that E'(t) = 0
- If the source is a wall outlet or alternator, the voltage is alternating
- In this case V_0 typically refers to the *rms voltage*, so that the true voltage input is $E(t) = \sqrt{2}V_0\sin(\omega t)$, where ω is the electrical angular frequency of the power source
- For wall outlets in the U.S.A., $\omega/2\pi=60~{\rm Hz}$

- Suppose that our voltage source is V_0 volts
- Depending on the kind of source, this may mean two different things
- If the source is a battery, then the voltage is *direct* and $E(t) = V_0$, so that E'(t) = 0
- If the source is a wall outlet or alternator, the voltage is alternating
- In this case V_0 typically refers to the *rms voltage*, so that the true voltage input is $E(t) = \sqrt{2}V_0\sin(\omega t)$, where ω is the electrical angular frequency of the power source
- For wall outlets in the U.S.A., $\omega/2\pi=60~{\rm Hz}$

- Suppose that our voltage source is V_0 volts
- Depending on the kind of source, this may mean two different things
- If the source is a battery, then the voltage is *direct* and $E(t) = V_0$, so that E'(t) = 0
- If the source is a wall outlet or alternator, the voltage is alternating
- In this case V_0 typically refers to the rms voltage, so that the true voltage input is $E(t) = \sqrt{2}V_0\sin(\omega t)$, where ω is the electrical angular frequency of the power source
- For wall outlets in the U.S.A., $\omega/2\pi=60~{\rm Hz}$

LCR-circuit example

- Suppose that our voltage source is V_0 volts
- Depending on the kind of source, this may mean two different things
- If the source is a battery, then the voltage is *direct* and $E(t) = V_0$, so that E'(t) = 0
- If the source is a wall outlet or alternator, the voltage is alternating
- In this case V_0 typically refers to the rms voltage, so that the true voltage input is $E(t) = \sqrt{2}V_0\sin(\omega t)$, where ω is the electrical angular frequency of the power source
- For wall outlets in the U.S.A., $\omega/2\pi=60~{\rm Hz}$

- Suppose that our voltage source is V₀ volts in direct current (ie. from a battery or DC generator)
- Then E(t) is constant, so E'(t) = 0
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = 0$$

• and for $R^2 < 4L/C$, the solution is of the form

$$I = re^{-Rt/2L}\cos(\mu t - \delta)$$

- Suppose that our voltage source is V₀ volts in direct current (ie. from a battery or DC generator)
- Then E(t) is constant, so E'(t) = 0
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = 0$$

• and for $R^2 < 4L/C$, the solution is of the form

$$I = re^{-Rt/2L}\cos(\mu t - \delta)$$

- Suppose that our voltage source is V₀ volts in direct current (ie. from a battery or DC generator)
- Then E(t) is constant, so E'(t) = 0
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = 0$$

• and for $R^2 < 4L/C$, the solution is of the form

$$I = re^{-Rt/2L}\cos(\mu t - \delta)$$

- Suppose that our voltage source is V₀ volts in direct current (ie. from a battery or DC generator)
- Then E(t) is constant, so E'(t) = 0
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = 0$$

• and for $R^2 < 4L/C$, the solution is of the form

$$I = re^{-Rt/2L}\cos(\mu t - \delta)$$

- Suppose that our voltage source is V₀ volts in direct current (ie. from a battery or DC generator)
- Then E(t) is constant, so E'(t) = 0
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = 0$$

• and for $R^2 < 4L/C$, the solution is of the form

$$I = re^{-Rt/2L}\cos(\mu t - \delta)$$

- Suppose that our voltage source is V₀ volts in direct current (ie. from a battery or DC generator)
- Then E(t) is constant, so E'(t) = 0
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = 0$$

• and for $R^2 < 4L/C$, the solution is of the form

$$I = re^{-Rt/2L}\cos(\mu t - \delta)$$

- Suppose that our voltage source is V₀ volts in direct current (ie. from a battery or DC generator)
- Then E(t) is constant, so E'(t) = 0
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = 0$$

• and for $R^2 < 4L/C$, the solution is of the form

$$I = re^{-Rt/2L}\cos(\mu t - \delta)$$

- How does *I*(*t*) behave at large time?
- It becomes very small, approaching zero exponentially fast
- Comparatively, the behavior of the current in the alternating voltage source case is much more interesting

- How does *I*(*t*) behave at large time?
- It becomes very small, approaching zero exponentially fast
- Comparatively, the behavior of the current in the alternating voltage source case is much more interesting

- How does *I*(*t*) behave at large time?
- It becomes very small, approaching zero exponentially fast
- Comparatively, the behavior of the current in the alternating voltage source case is much more interesting

- How does *I*(*t*) behave at large time?
- It becomes very small, approaching zero exponentially fast
- Comparatively, the behavior of the current in the alternating voltage source case is much more interesting

- Suppose that our voltage source is V_0 volts in alternating current (ie. from a wall socket or alternator)
- Then $E(t) = \sqrt{2} V_0 \sin(\omega t)$, so $E'(t) = \sqrt{2} \omega V_0 \cos(\omega t)$
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

In this case, the solution has two components

solution to homogeneous equation particular solution
$$C_1 I_1 + C_2 I_2 + I_D$$

- Suppose that our voltage source is V₀ volts in alternating current (ie. from a wall socket or alternator)
- Then $E(t) = \sqrt{2} V_0 \sin(\omega t)$, so $E'(t) = \sqrt{2} \omega V_0 \cos(\omega t)$
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

In this case, the solution has two components

solution to nomogeneous equation particular solution
$$l = c_1 l_1 + c_2 l_2 + l_p$$

- Suppose that our voltage source is V₀ volts in alternating current (ie. from a wall socket or alternator)
- Then $E(t) = \sqrt{2} V_0 \sin(\omega t)$, so $E'(t) = \sqrt{2}\omega V_0 \cos(\omega t)$
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

In this case, the solution has two components

solution to homogeneous equation particular solution

$$I = \overbrace{c_1 l_1 + c_2 l_2} + \overbrace{l_p}$$

- Suppose that our voltage source is V₀ volts in alternating current (ie. from a wall socket or alternator)
- Then $E(t) = \sqrt{2} V_0 \sin(\omega t)$, so $E'(t) = \sqrt{2} \omega V_0 \cos(\omega t)$
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

In this case, the solution has two components

=
$$c_1 l_1 + c_2 l_2$$
 + l_p

- Suppose that our voltage source is V₀ volts in alternating current (ie. from a wall socket or alternator)
- Then $E(t) = \sqrt{2} V_0 \sin(\omega t)$, so $E'(t) = \sqrt{2} \omega V_0 \cos(\omega t)$
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

In this case, the solution has two components

solution to homogeneous equation particular solution
$$I = \underbrace{c_1 I_1 + c_2 I_2}_{l_D} + \underbrace{I_D}_{l_D}$$

- Suppose that our voltage source is V₀ volts in alternating current (ie. from a wall socket or alternator)
- Then $E(t) = \sqrt{2} V_0 \sin(\omega t)$, so $E'(t) = \sqrt{2} \omega V_0 \cos(\omega t)$
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

In this case, the solution has two components

solution to homogeneous equation particular solution
$$I = \underbrace{c_1 I_1 + c_2 I_2}_{c_1 I_2} + \underbrace{I_D}_{c_2 I_2}$$

- Suppose that our voltage source is V₀ volts in alternating current (ie. from a wall socket or alternator)
- Then $E(t) = \sqrt{2} V_0 \sin(\omega t)$, so $E'(t) = \sqrt{2} \omega V_0 \cos(\omega t)$
- Also assume that R > 0 (which is *always* true in real life)
- The current satisfies the equation

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

In this case, the solution has two components

solution to homogeneous equation particular solution
$$I = \underbrace{c_1 I_1 + c_2 I_2}_{C_1 I_2} + \underbrace{I_D}_{D}$$

- As the solution to the homogeneous equation we derived before shows us, the solution to the homogeneous equation will become very small at large times
- Therefore, at large times, the general solution will look very similar to the particular solution
- For this reason, we often call $c_1I_1 + c_2I_2$ the *transient* solution (in the case of circuits, also called a transient current
- And we call I_p the steady state solution or forced response (in the circuit case, also called steady state current).

- As the solution to the homogeneous equation we derived before shows us, the solution to the homogeneous equation will become very small at large times
- Therefore, at large times, the general solution will look very similar to the particular solution
- For this reason, we often call $c_1I_1 + c_2I_2$ the *transient* solution (in the case of circuits, also called a transient current
- And we call I_p the steady state solution or forced response (in the circuit case, also called steady state current).

- As the solution to the homogeneous equation we derived before shows us, the solution to the homogeneous equation will become very small at large times
- Therefore, at large times, the general solution will look very similar to the particular solution
- For this reason, we often call $c_1I_1 + c_2I_2$ the *transient* solution (in the case of circuits, also called a transient current
- And we call I_p the steady state solution or forced response (in the circuit case, also called steady state current).

- As the solution to the homogeneous equation we derived before shows us, the solution to the homogeneous equation will become very small at large times
- Therefore, at large times, the general solution will look very similar to the particular solution
- For this reason, we often call $c_1 I_1 + c_2 I_2$ the *transient* solution (in the case of circuits, also called a transient current
- And we call I_p the steady state solution or forced response (in the circuit case, also called steady state current).

- As the solution to the homogeneous equation we derived before shows us, the solution to the homogeneous equation will become very small at large times
- Therefore, at large times, the general solution will look very similar to the particular solution
- For this reason, we often call $c_1 I_1 + c_2 I_2$ the *transient* solution (in the case of circuits, also called a transient current
- And we call I_p the steady state solution or forced response (in the circuit case, also called steady state current).

Thus we write

$$I = I_{\text{transient}} + I_{\text{steady}},$$

where I_{steady} is a particular solution of

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

 and where I_{transient} is a solution of the corresponding homogeneous equation

$$LI'' + RI' + I/C = 0$$

Thus we write

$$I = I_{\text{transient}} + I_{\text{steady}},$$

• where I_{steady} is a particular solution of

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

 and where I_{transient} is a solution of the corresponding homogeneous equation

$$LI'' + RI' + I/C = 0$$

Thus we write

$$I = I_{\text{transient}} + I_{\text{steady}},$$

• where I_{steady} is a particular solution of

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

 and where I_{transient} is a solution of the corresponding homogeneous equation

$$LI'' + RI' + I/C = 0$$

Thus we write

$$I = I_{\text{transient}} + I_{\text{steady}},$$

• where I_{steady} is a particular solution of

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

 and where I_{transient} is a solution of the corresponding homogeneous equation

$$LI'' + RI' + I/C = 0$$

Thus we write

$$I = I_{\text{transient}} + I_{\text{steady}},$$

where I_{steady} is a particular solution of

$$LI'' + RI' + I/C = \sqrt{2}\omega V_0 \cos(\omega t)$$

 and where I_{transient} is a solution of the corresponding homogeneous equation

$$LI'' + RI' + I/C = 0$$

Straightforward but tedious algebraic calculation may be used to show

$$I_{\text{steady}} = r \cos(\omega t - \delta),$$

where

$$r = \frac{\sqrt{2\omega} V_0}{\Delta}, \quad \cos(\delta) = \frac{L(\omega_0^2 - \omega^2)}{\Delta}, \quad \sin(\delta) = \frac{R\omega}{\Delta}$$

and also

$$\Delta = \sqrt{L^2(\omega_0^2 - \omega^2)^2 + R^2\omega^2}, \quad \omega_0 = 1/\sqrt{LC}$$

Straightforward but tedious algebraic calculation may be used to show

$$I_{\text{steady}} = r \cos(\omega t - \delta),$$

where

$$r = \frac{\sqrt{2\omega}V_0}{\Delta}, \quad \cos(\delta) = \frac{L(\omega_0^2 - \omega^2)}{\Delta}, \quad \sin(\delta) = \frac{R\omega}{\Delta}$$

and also

$$\Delta = \sqrt{L^2(\omega_0^2 - \omega^2)^2 + R^2\omega^2}, \quad \omega_0 = 1/\sqrt{LC}$$

Straightforward but tedious algebraic calculation may be used to show

$$I_{\mathsf{steady}} = r \cos(\omega t - \delta),$$

where

$$r = rac{\sqrt{2}\omega V_0}{\Delta}, \quad \cos(\delta) = rac{L(\omega_0^2 - \omega^2)}{\Delta}, \quad \sin(\delta) = rac{R\omega}{\Delta}$$

and also

$$\Delta = \sqrt{L^2(\omega_0^2 - \omega^2)^2 + R^2\omega^2}, \quad \omega_0 = 1/\sqrt{LC}$$

Straightforward but tedious algebraic calculation may be used to show

$$I_{\text{steady}} = r \cos(\omega t - \delta),$$

where

$$r = rac{\sqrt{2}\omega V_0}{\Delta}, \quad \cos(\delta) = rac{L(\omega_0^2 - \omega^2)}{\Delta}, \quad \sin(\delta) = rac{R\omega}{\Delta}$$

and also

$$\Delta = \sqrt{L^2(\omega_0^2 - \omega^2)^2 + R^2\omega^2}, \quad \omega_0 = 1/\sqrt{LC}$$

 Straightforward but tedious algebraic calculation may be used to show

$$I_{\mathsf{steady}} = r \cos(\omega t - \delta),$$

where

$$r = rac{\sqrt{2}\omega V_0}{\Delta}, \quad \cos(\delta) = rac{L(\omega_0^2 - \omega^2)}{\Delta}, \quad \sin(\delta) = rac{R\omega}{\Delta}$$

and also

$$\Delta = \sqrt{L^2(\omega_0^2 - \omega^2)^2 + R^2\omega^2}, \quad \omega_0 = 1/\sqrt{LC}$$

Outline

- Forced Vibrations Introduction
 - First Examples
 - Alternating Current and LCR Circuits
- Forced Vibration Example
 - LCR Circuit Specific Example
 - DC Case
 - AC Case

LCR-circuit example

Example

Suppose that an LCR-circuit has a 1 H inductor, a 1 F capacitor, and a 0.125Ω resistor. Also suppose that the initially I'(0) = 0 and I(0) = 2. If a voltage source of 0.25 volts is connected, determine the current as a function of time.

We consider two cases:

- when the voltage source is direct current (DC)
- when the voltage source is alternating current (AC)

LCR-circuit example

Example

Suppose that an LCR-circuit has a 1 H inductor, a 1 F capacitor, and a 0.125Ω resistor. Also suppose that the initially I'(0) = 0 and I(0) = 2. If a voltage source of 0.25 volts is connected, determine the current as a function of time.

We consider two cases:

- when the voltage source is direct current (DC)
- when the voltage source is alternating current (AC)

LCR-circuit example

Example

Suppose that an LCR-circuit has a 1 H inductor, a 1 F capacitor, and a 0.125Ω resistor. Also suppose that the initially I'(0) = 0 and I(0) = 2. If a voltage source of 0.25 volts is connected, determine the current as a function of time.

We consider two cases:

- when the voltage source is direct current (DC)
- when the voltage source is alternating current (AC)

LCR-circuit example

Example

Suppose that an LCR-circuit has a 1 H inductor, a 1 F capacitor, and a 0.125Ω resistor. Also suppose that the initially I'(0) = 0 and I(0) = 2. If a voltage source of 0.25 volts is connected, determine the current as a function of time.

We consider two cases:

- when the voltage source is direct current (DC)
- when the voltage source is alternating current (AC)

Outline

- Forced Vibrations Introduction
 - First Examples
 - Alternating Current and LCR Circuits
- Forced Vibration Example
 - LCR Circuit Specific Example
 - DC Case
 - AC Case

- Assume that the voltage source is direct
- We have that C = 1, L = 1, and R = 0.125.
- In this case, E(t) = 0.25, E'(0) = 0, so that I is a solution to the initial value problem

$$I'' + 0.125I' + I = 0, I(0) = 2, I'(0) = 0$$

$$I = \frac{32}{\sqrt{255}} e^{-t/16} \cos\left(\frac{\sqrt{255}}{16}t - \delta\right)$$

for
$$\delta = \tan^{-1} \frac{1}{\sqrt{255}} \approx 0.0625$$

- Assume that the voltage source is direct
- We have that C = 1, L = 1, and R = 0.125.
- In this case, E(t) = 0.25, E'(0) = 0, so that I is a solution to the initial value problem

$$I'' + 0.125I' + I = 0, I(0) = 2, I'(0) = 0$$

$$I = \frac{32}{\sqrt{255}} e^{-t/16} \cos\left(\frac{\sqrt{255}}{16}t - \delta\right)$$

for
$$\delta = an^{-1} rac{1}{\sqrt{255}} pprox 0.0625$$

- Assume that the voltage source is direct
- We have that C = 1, L = 1, and R = 0.125.
- In this case, E(t) = 0.25, E'(0) = 0, so that I is a solution to the initial value problem

$$I'' + 0.125I' + I = 0, I(0) = 2, I'(0) = 0$$

$$I = \frac{32}{\sqrt{255}} e^{-t/16} \cos\left(\frac{\sqrt{255}}{16}t - \delta\right)$$

for
$$\delta = an^{-1} rac{1}{\sqrt{255}} pprox 0.0625$$

- Assume that the voltage source is direct
- We have that C = 1, L = 1, and R = 0.125.
- In this case, E(t) = 0.25, E'(0) = 0, so that I is a solution to the initial value problem

$$I'' + 0.125I' + I = 0, I(0) = 2, I'(0) = 0$$

$$I = \frac{32}{\sqrt{255}} e^{-t/16} \cos\left(\frac{\sqrt{255}}{16}t - \delta\right)$$

for
$$\delta = an^{-1} rac{1}{\sqrt{255}} pprox 0.0625$$

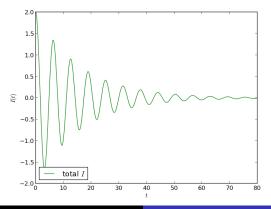
- Assume that the voltage source is direct
- We have that C = 1, L = 1, and R = 0.125.
- In this case, E(t) = 0.25, E'(0) = 0, so that I is a solution to the initial value problem

$$I'' + 0.125I' + I = 0, I(0) = 2, I'(0) = 0$$

$$I = \frac{32}{\sqrt{255}} e^{-t/16} \cos \left(\frac{\sqrt{255}}{16} t - \delta \right)$$

for
$$\delta = tan^{-1}\,\frac{1}{\sqrt{255}}\approx 0.0625$$

Figure : Current in the LCR circuit L = 1, C = 1, R = 0.125, E = 0.25, with the initial condition I(0) = 2 and I'(0) = 0



Outline

- Forced Vibrations Introduction
 - First Examples
 - Alternating Current and LCR Circuits
- Forced Vibration Example
 - LCR Circuit Specific Example
 - DC Case
 - AC Case

- Assume the voltage source is alternating with angular frequency $\omega=1$
- We have that C = 1, L = 1, and R = 0.125.
- In this case, it's the RMS voltage that is 0.25 volts
- This means that $E(t) = 0.25\sqrt{2}\sin(t)$, and $E'(0) = 0.25\sqrt{2}\cos(t)$, so that I is a solution to the initial value problem

$$I'' + 0.125I' + I = 0.25\sqrt{2}\cos(t)$$

- Assume the voltage source is alternating with angular frequency $\omega=1$
- We have that C = 1, L = 1, and R = 0.125.
- In this case, it's the RMS voltage that is 0.25 volts
- This means that $E(t) = 0.25\sqrt{2}\sin(t)$, and $E'(0) = 0.25\sqrt{2}\cos(t)$, so that I is a solution to the initial value problem

$$I'' + 0.125I' + I = 0.25\sqrt{2}\cos(t)$$

- Assume the voltage source is alternating with angular frequency $\omega=1$
- We have that C = 1, L = 1, and R = 0.125.
- In this case, it's the RMS voltage that is 0.25 volts
- This means that $E(t) = 0.25\sqrt{2}\sin(t)$, and $E'(0) = 0.25\sqrt{2}\cos(t)$, so that I is a solution to the initial value problem

$$I'' + 0.125I' + I = 0.25\sqrt{2}\cos(t)$$

- Assume the voltage source is alternating with angular frequency $\omega=1$
- We have that C = 1, L = 1, and R = 0.125.
- In this case, it's the RMS voltage that is 0.25 volts
- This means that $E(t) = 0.25\sqrt{2}\sin(t)$, and $E'(0) = 0.25\sqrt{2}\cos(t)$, so that I is a solution to the initial value problem

$$I'' + 0.125I' + I = 0.25\sqrt{2}\cos(t)$$

- Assume the voltage source is alternating with angular frequency $\omega=1$
- We have that C = 1, L = 1, and R = 0.125.
- In this case, it's the RMS voltage that is 0.25 volts
- This means that $E(t) = 0.25\sqrt{2}\sin(t)$, and $E'(0) = 0.25\sqrt{2}\cos(t)$, so that I is a solution to the initial value problem

$$I'' + 0.125I' + I = 0.25\sqrt{2}\cos(t)$$

As per our previous discussion, we write

$$I = I_{\text{transient}} + I_{\text{stable}}$$

where I_{transient} is a solution of the homogeneous equation

$$I'' + 0.125I' + I = 0$$

$$I'' + 0.125I' + I = 0.25\sqrt{2}\cos(t)$$

• As per our previous discussion, we write

$$I = I_{\text{transient}} + I_{\text{stable}},$$

• where $I_{\text{transient}}$ is a solution of the homogeneous equation

$$I'' + 0.125I' + I = 0$$

$$I'' + 0.125I' + I = 0.25\sqrt{2}\cos(t)$$

• As per our previous discussion, we write

$$I = I_{\text{transient}} + I_{\text{stable}},$$

 \bullet where $I_{transient}$ is a solution of the homogeneous equation

$$I'' + 0.125I' + I = 0$$

$$I'' + 0.125I' + I = 0.25\sqrt{2}\cos(t)$$

As per our previous discussion, we write

$$I = I_{\text{transient}} + I_{\text{stable}},$$

 \bullet where $I_{transient}$ is a solution of the homogeneous equation

$$I'' + 0.125I' + I = 0$$

$$I'' + 0.125I' + I = 0.25\sqrt{2}\cos(t)$$

• Using the equation of the previous slide,

$$I_{\text{steady}} = r \cos(\omega t - \delta),$$

• where $\omega_0=1$, $\Delta=\sqrt{0.125}=\sqrt{2}/4$, $\delta=\pi/2$, and r=1, so that

$$I_{\text{steady}} = \cos\left(t - \frac{\pi}{2}\right)$$

Using the equation of the previous slide,

$$I_{\text{steady}} = r \cos(\omega t - \delta),$$

• where $\omega_0=1$, $\Delta=\sqrt{0.125}=\sqrt{2}/4$, $\delta=\pi/2$, and r=1, so that

$$I_{\text{steady}} = \cos\left(t - \frac{\pi}{2}\right)$$

Using the equation of the previous slide,

$$I_{\text{steady}} = r \cos(\omega t - \delta),$$

• where $\omega_0=1$, $\Delta=\sqrt{0.125}=\sqrt{2}/4$, $\delta=\pi/2$, and r=1, so that

$$I_{\mathsf{steady}} = \cos\left(t - \frac{\pi}{2}\right)$$

$$I_{\text{transient}} = r_0 e^{-t/16} \cos \left(\frac{\sqrt{255}}{16} t - \delta_0 \right),$$

- where r_0 and δ_0 are some constants depending on our initial condition I(0) = 2 and I'(0) = 0.
- EXERCISE: determine r_0 and δ_0

$$I_{\text{transient}} = r_0 e^{-t/16} \cos \left(\frac{\sqrt{255}}{16} t - \delta_0 \right),$$

- where r_0 and δ_0 are some constants depending on our initial condition I(0) = 2 and I'(0) = 0.
- EXERCISE: determine r_0 and δ_0

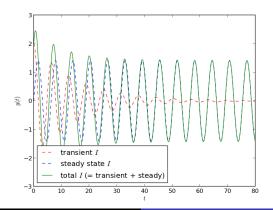
$$I_{\text{transient}} = r_0 e^{-t/16} \cos \left(\frac{\sqrt{255}}{16} t - \delta_0 \right),$$

- where r_0 and δ_0 are some constants depending on our initial condition I(0) = 2 and I'(0) = 0.
- EXERCISE: determine r_0 and δ_0

$$I_{\text{transient}} = r_0 e^{-t/16} \cos \left(\frac{\sqrt{255}}{16} t - \delta_0 \right),$$

- where r_0 and δ_0 are some constants depending on our initial condition I(0) = 2 and I'(0) = 0.
- EXERCISE: determine r_0 and δ_0

Figure : Current in the LCR circuit L = 1, C = 1, R = 0.125, E = 0.25, with the initial condition I(0) = 2 and I'(0) = 0



Today:

Forced vibrations

Next time:

Today:

Forced vibrations

Next time

Today:

Forced vibrations

Next time:

Today:

Forced vibrations

Next time: