Math 307 Lecture 18 More on Laplace Transforms

W.R. Casper

Department of Mathematics University of Washington

June 3, 2014

Today!

Last time:

More on Forced vibrations

This time:

Intro to Laplace Transforms

Next time:

Laplace Transforms and Step Functions

Outline

- Intro. to Laplace Transforms
 - What is the Laplace Transform?
 - Properties of the Laplace Transform
 - What Functions have Laplace Transforms?
- Using Laplace Transforms to Solve ODEs
 - Inverse Laplace Transform
 - Solving IVPs with Laplace Transforms

Basic Definition and Facts

Definition

Suppose f(t) is some function. Then the function

$$\mathcal{L}\left\{f(t)\right\} := F(s) = \int_0^\infty e^{-st} f(t) dt$$

is called the *Laplace transform* of f(t).

- The Laplace transform is a powerful tool for solving linear differential equations
- Before we find out how it is useful for this, let's look at some examples

Some Examples of Laplace Transforms

• Let a > 0, then

$$\mathcal{L}\left\{e^{at}\right\} = \int_{0}^{\infty} e^{-st} e^{at} dt$$
$$= \int_{0}^{\infty} e^{(a-s)t} dt$$
$$= \frac{1}{a-s} e^{(a-s)t} \Big|_{0}^{\infty}$$
$$= \frac{1}{s-a}$$

Some Examples of Laplace Transforms

• Let $a \neq 0$, then

$$\mathcal{L}\left\{\cos(at)\right\} = \mathcal{L}\left\{\operatorname{Re}\left\{e^{iat}\right\}\right\}$$

$$= \operatorname{Re}\left\{\mathcal{L}\left\{e^{iat}\right\}\right\}$$

$$= \operatorname{Re}\left\{\int_{0}^{\infty} e^{-st}e^{iat}dt\right\}$$

$$= \operatorname{Re}\left\{\frac{1}{s - ia}\right\} = \operatorname{Re}\left\{\frac{s + ia}{s^2 + a^2}\right\}$$

$$= \frac{s}{s^2 + a^2}$$

Some Examples of Laplace Transforms

• Let $a \neq 0$, then

$$\mathcal{L}\left\{\sin(at)\right\} = \mathcal{L}\left\{\operatorname{Im}\left\{e^{iat}\right\}\right\}$$

$$= \operatorname{Im}\left\{\mathcal{L}\left\{e^{iat}\right\}\right\}$$

$$= \dots$$

$$= \operatorname{Im}\left\{\frac{s+ia}{s^2+a^2}\right\}$$

$$= \frac{a}{s^2+a^2}$$

Try it Yourself!

Find the Laplace Transform of the following functions...

•
$$f(t) = e^{at} \sin(bt)$$

•
$$f(t) = e^{at}\cos(bt)$$

•
$$f(t) = te^{at}$$

•
$$f(t) = t \sin(at)$$

- The Laplace transform is a "linear operator"
- In other words, given functions $f_1(t)$, $f_2(t)$ and constants c_1 , c_2

$$\mathcal{L}\left\{c_{1}f_{1}(t)+c_{2}f_{2}(t)\right\} = \int_{0}^{\infty} e^{-st}(c_{1}f_{1}(t)+c_{2}f_{2}(t))dt$$

$$= c_{1}\int_{0}^{\infty} e^{-st}f_{1}(t)dt + c_{2}\int_{0}^{\infty} e^{-st}f_{2}(t)dt$$

$$= c_{1}\mathcal{L}\left\{f_{1}(t)\right\} + c_{2}\mathcal{L}\left\{f_{2}(t)\right\}$$

In summary:

$$\mathcal{L}\left\{c_{1}f_{1}(t)+c_{2}f_{2}(t)\right\}=c_{1}\mathcal{L}\left\{f_{1}(t)\right\}+c_{2}\mathcal{L}\left\{f_{2}(t)\right\}.$$

Laplace Transform Makes Derivatives into Polynomials

- The Laplace Transform changes expressions with derivatives in t to polynomials in s.
- For example

$$\mathcal{L}\left\{f'(t)\right\} = \int_0^\infty e^{-st} f'(t) dt$$

$$= e^{-st} f(t) \Big|_0^\infty - \int_0^\infty (-s) e^{-st} f(t) dt$$

$$= -f(0) + s \int_0^\infty e^{-st} f(t) dt = s \mathcal{L}\left\{f(t)\right\} - f(0)$$

In summary:

$$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f\right\} - f(0).$$

Laplace Transform Makes Derivatives into Polynomials

- How about $\mathcal{L}\{f''(t)\}$?
- Well, from the previous identity applied to f'(t):

$$\mathcal{L}\left\{f''(t)\right\} = s\mathcal{L}\left\{f'(t)\right\} - f'(0)$$

• Then since $\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f\right\} - f(0)$, we find

$$\mathcal{L}\left\{f''(t)\right\} = s(s\mathcal{L}\left\{f\right\} - f(0)) - f'(0) = s^2\mathcal{L}\left\{f\right\} - sf(0) - f'(0).$$

Try it Yourself!

Rewrite each of the following in terms of s and $\mathcal{L}\left\{f\right\}$

- $\mathcal{L}\{f^{(4)}(t)\}$
- $\mathcal{L}\{f''+2f'+4f\}$

Laplace Transform Makes Derivatives into Polynomials

More generally, we have the following identity (check!)

Equation

$$\mathcal{L}\left\{f^{(n)}\right\} = s^{n}\mathcal{L}\left\{f\right\} - s^{n-1}f(0) - \cdots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

A Word of Caution to this Tale...

- Not every function has a Laplace transform!
- For example, consider the function $f(t) = e^{t^2}$
- Notice that $e^{-st}e^{t^2}=e^{t^2-st}\to +\infty$ for large t, regardless of the value of s
- Therefore the integral

$$\mathcal{L}\left\{e^{t^2}\right\} = \int_0^\infty e^{-st} e^{t^2} dt$$
 DOES NOT EXIST

- ullet This means that e^{t^2} does not have a Laplace transform.
- Can you think of any other functions without a Laplace transform?

When Should We Expect Laplace Transforms to Exist?

 To describe what kinds of functions have Laplace transforms, we need a couple definitions:

Definition

A function f(t) is of exponential type if there exists positive constants K, a such that $|f(t)| \le Ke^{at}$

Definition

A function f(t) is *piecewise continuous* if on any finite interval [a, b] it is the multipart rule of a finite number of continuous functions bounded on [a, b]

When Should We Expect Laplace Transforms to Exist?

With this we have the following theorem

Theorem

Suppose f(t) is piecewise continuous of exponential type, and that K, a > 0 satisfy $|f(t)| \le Ke^{at}$. Then $\mathcal{L}\{f(t)\} = F(s)$ exists for all s > a.

 If you are trying to take the Laplace transform of a function that is not piecewise continuous or of exponential type, then you should be suspicious!

Inverse of a Laplace Transform

 One of the most important properties of Laplace transforms, is that they are invertible

Definition

Consider any function F(s), and suppose that there exists a piecewise continuous function of exponential type f(t) such that $\mathcal{L}\{f(t)\} = F(s)$. Then f(t) is unique, and is called the *inverse Laplace transform* of F(s), and denoted $\mathcal{L}^{-1}\{F(s)\}$

Example

Find the inverse Laplace transform of $F(s) = \frac{2}{s^2+4}$

- Recall that $\mathcal{L}\left\{\sin(at)\right\} = \frac{a}{s^2 + a^2}$
- This means that $\mathcal{L}\left\{\sin(2t)\right\} = \frac{2}{s^2+4}$
- Therefore $\mathcal{L}^{-1}\left\{\frac{2}{s^2+4}\right\} = \sin(2t)$

Example

Find the inverse Laplace transform of $F(s) = \frac{s}{s^2 + 2s + 6}$

- Hmm...this form doesn't look familiar. Any ideas?
- Best idea: complete the square!
- $s^2 + 2s + 6 = (s+1)^2 + 4$
- Where does this get us?
- Remember that

$$\mathcal{L}\left\{e^{at}\sin(bt)\right\} = \frac{b}{(s-a)^2 + b^2}, \quad \mathcal{L}\left\{e^{at}\cos(bt)\right\} = \frac{(s-a)}{(s-a)^2 + b^2}$$

- We want to put F(s) in this form.
- Doing so is easy!

$$F(s) = \frac{s}{s^2 + 2s + 6} = \frac{s}{(s+1)^2 + 4}$$

$$= \frac{(s+1) - 1}{(s+1)^2 + 4}$$

$$= \frac{(s+1)}{(s+1)^2 + 4} - \frac{1}{(s+1)^2 + 4}$$

$$= \frac{(s+1)}{(s+1)^2 + 4} - \frac{1}{2} \frac{2}{(s+1)^2 + 4}$$

- Now since $\mathcal{L}\left\{e^t\cos(2t)\right\} = \frac{(s+1)}{(s+1)^2+4}$ and $\mathcal{L}\left\{e^t\sin(2t)\right\} = \frac{2}{(s+1)^2+4}$
- We have shown that (since L {⋅} is linear)

$$F(s) = \mathcal{L}\left\{e^t \cos(2t)\right\} - \frac{1}{2}\mathcal{L}\left\{e^t \sin(2t)\right\}$$
$$= \mathcal{L}\left\{e^t \cos(2t) - \frac{1}{2}e^t \sin(2t)\right\}$$

Therefore

$$\mathcal{L}^{-1}\left\{F(s)\right\} = e^t \cos(2t) - \frac{1}{2}e^t \sin(2t).$$

Example

Find the inverse Laplace transform of $F(s) = \frac{s}{s^2 + 2s + 1}$

- What should we try?
- This time, factor!
- $s^2 + 2s + 1 = (s+1)^2$
- Then use partial fractions

First we write

$$F(s) = \frac{s}{(s+1)^2} = \frac{A}{s+1} + \frac{B}{(s+1)^2}$$

- This tells us s = A(s+1) + B
- When s = -1, this gives us B = -1
- Comparing coefficients of s on both sides also tells us
 A = 1
- Therefore

$$F(s) = \frac{1}{s+1} - \frac{1}{(s+1)^2}$$

 For n a positive integer, the Laplace transform of tⁿe^{at} is (by a homework problem)

$$\mathcal{L}\left\{t^{n}e^{at}\right\} = \frac{n!}{(s-a)^{n+1}}$$

- Therefore $\mathcal{L}\left\{e^{-t}\right\}=rac{1}{s+1}$ and $\mathcal{L}\left\{te^{-t}\right\}=rac{1}{(s+1)^2}$
- This means

$$F(s) = \mathcal{L}\left\{e^{-t}\right\} - \mathcal{L}\left\{te^{-t}\right\} = \mathcal{L}\left\{e^{-t} - te^{-t}\right\}$$

and therefore

$$\mathcal{L}^{-1}\{F(s)\}=e^{-t}-te^{-t}$$

Solving IVPs with Laplace Transforms

Suppose we have an IVP

$$ay'' + by' + cy = f(t).$$

- We can solve this using the Laplace transform
- The idea is to take the Laplace transform of both sides
- Then find an expression for $\mathcal{L}\{y\}$
- Then invert it to find y

Example

Solve the IVP

$$y'' - y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = 0$

using Laplace transforms.

First of all

$$\mathcal{L}\left\{y'\right\} = s\mathcal{L}\left\{y\right\} - y(0) = s\mathcal{L}\left\{y\right\} - 1.$$

and also

$$\mathcal{L}\{y''\} = s^2 \mathcal{L}\{y\} - sy(0) - y'(0) = s^2 \mathcal{L}\{y\} - s.$$

 Taking the Laplace transform of both sides of the differential equation yields

$$\mathcal{L}\left\{y''-y'-2y\right\}=\mathcal{L}\left\{0\right\}=0$$

Moreover

$$\mathcal{L}\left\{y'' - y' - 2y\right\} = \mathcal{L}\left\{y''\right\} - \mathcal{L}\left\{y'\right\} - 2\mathcal{L}\left\{y\right\}$$
$$= (s^2 - s - 2)\mathcal{L}\left\{y\right\} + 1 - s$$

Therefore

$$(s^2-s-2)\mathcal{L}\{y\}+1-s=0,$$

so that

$$\mathcal{L}\left\{y\right\} = \frac{s-1}{s^2-s-2}$$

Factoring, we get

$$s^2 - s - 2 = (s-2)(s+1)$$

Then partial fractions tells us

$$\mathcal{L}\{y\} = \frac{s-1}{(s-2)(s+1)} = \frac{A}{s-2} + \frac{B}{s+1}$$

where

$$s-1 = A(s+1) + B(s-2)$$

• When s = -1, this tells us that B = 2/3, and when s = 2, this tells us that A = 1/3 Therefore

$$\mathcal{L}\{y\} = \frac{1/3}{s-2} + \frac{2/3}{s+1}$$

Thus

$$\mathcal{L}\left\{y\right\} = \frac{1}{3}\mathcal{L}\left\{e^{2t}\right\} + \frac{2}{3}\mathcal{L}\left\{e^{-t}\right\}$$
$$= \mathcal{L}\left\{\frac{1}{3}e^{2t} + \frac{2}{3}e^{-t}\right\}$$

and therefore

$$y = \frac{1}{3}e^{2t} + \frac{2}{3}e^{-t}$$
.

Try it Yourself!

Use the Laplace transform to solve the following initial value problems!

•
$$y'' + y = \sin(2t)$$
, $y(0) = 2$, $y'(0) = 1$

•
$$y^{(4)} - y = 0$$
, $y(0) = 0$, $y'(0) = 1$, $y''(0) = 0$, $y'''(0) = 0$

Review!

Today:

• Fun with Laplace Transforms!

Next time:

Laplace Transforms and Step Functions