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Step Functions
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Differential Equations with Discontinuous Forcing

Next time:
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Step Functions and Hat Functions

Last time we defined a step function to be a function of the
form

uc(t) =
{

0 if t < c
1 if t ≥ c

And a hat function to be a function of the form

ha,b(t) = ua(t)− ub(t) =


0, if t < a
1, if a ≤ t < b
0, if t > b
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Figure : Plot of step function uc(t)
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Last time we also learned how to convert from a function
defined this way:

f (t) =
{

sin(t) if 0 ≤ t < π/4
sin(t) + cos(t − π/4) if t ≥ π/4

To a function defined this way

f (t) = sin(t)u0(t) + cos(t − π/4)uπ/4(t)
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Try it Yourself!

Convert the following functions from bracket form to step
function form:

f (t) =
{

1 if 0 ≤ t < 2
e−(t−2) if t ≥ 2

f (t) =


t if 0 ≤ t < 1

t − 1 if 1 ≤ t < 2
t − 2 if 2 ≤ t < 3

0 if t ≥ 3
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Laplace Transform of f (t − c)uc(t)

Suppose that f (t) is a piecewise continuous functions of
exponential type, and that c > 0. Then
We wish to calculate the Laplace transform of f (t − c)uc(t)
Computation first shows

L{f (t − c)uc(t)} =
∫ ∞

0
e−st f (t − c)uc(t)dt

=

∫ ∞
c

e−st f (t − c)dt
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Laplace Transform of f (t − c)uc(t)

Now if we do the u-substitution u = t − c, then du = dt and

L{f (t − c)uc(t)} =
∫ ∞

0
e−s(u+c)f (u)du

= e−sc
∫ ∞

0
e−suf (u)du = e−scL{f (t)} .

To summarize

L{f (t − c)uc(t)} = e−scL{f (t)} .

And consequently for L{f (t)} = F (s),

L−1 {F (s)e−sc} = f (t − c)uc(t)
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Laplace Transform of ect f (t)

Let F (s) be the Laplace transform of f (t)
We wish to calculate the Laplace transform of f (t)ect

Computation first shows

L
{

ect f (t)
}
=

∫ ∞
0

e−stect f (t)dt

=

∫ ∞
0

e−(s−c)t f (t)dt = F (s − c)

To summarize L
{

f (t)ect} = F (s − c),
And consequently L−1 {F (s − c)} = ect f (t)
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Summary of Additional Laplace Transform Properties

Additional Laplace transform properties:

L{f (t − c)uc(t)} = e−scL{f (t)}

L−1 {e−scF (s)
}
= f (t − c)uc(t)

L
{

f (t)ect} = F (s − c)

L−1 {F (s − c)} = ect f (t)
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A First Example

Example
Find the Laplace transform of

f (t) =
{

sin(t) if 0 ≤ t < π/4
sin(t) + cos(t − π/4) if t ≥ π/4

As we saw earlier, we may write

f (t) = sin(t)u0(t) + cos(t − π/4)uπ/4(t)
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A First Example

So what will it’s Laplace transform look like?
Using the Laplace transform of step functions, we see that
its Laplace transform is

L{f (t)} = L{sin(t)u0(t)}+ L
{

cos(t − π/4)uπ/4(t)
}

= e−0sL{sin(t)}+ e−πs/4L{cos(t)}

=
1

s2 + 1
+ e−πs/4 s

s2 + 1
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A Second Example

Example
Find the inverse Laplace transform of

F (s) =
1− e−2s

s2

We first write
F (s) =

1
s2 − e−2s 1

s2

Also recall that L{t} = 1
s2
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A Second Example

Therefore we calculate

f (t) = L−1 {F (s)} = L−1
{

1
s2

}
− L−1

{
e−2s 1

s2

}
= t − u2(t)(t − 2)

We can but this back into the bracket notation as

f (t) =
{

t if t < 2
2 if t ≥ 2
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A Third Example

Example
Find the inverse Laplace transform of

F (s) =
1

s2 − 4s + 5

We first write
F (s) =

1
(s − 2)2 + 1

Therefore we can write F (s) = G(s − 2) for G(s) = 1
s2+1

Since L−1 {G(s)} = sin(t), it follows that

L−1 {F (s)} = L−1 {G(s − 2)} = e2t sin(t).
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Laplace Transform Examples

Find the Laplace Transforms of the following functions

f (t) =
{

0 if t < 2
(t − 2)2 if t ≥ 2

f (t) =


0 if t < π

t − π if π ≤ t < 2π
0 if t ≥ 2π
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Inverse Laplace Transform Examples

Find the Inverse Laplace Transforms of the following functions

F (s) =
3!

(s − 2)4

F (s) =
2(s − 1)e−2s

s2 − 2s + 2

F (s) =
(s − 2)e−s

s2 − 4s + 3
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An Example

Example
Find the solution of the initial value problem

2y ′′ + y ′ + 2y = g(t), y(0) = 0, y ′(0) = 0

where

g(t) = u5(t)− u20(t) =


0 if 0 ≤ t < 5
1 if 5 ≤ t < 20
0 if t ≥ 20

W.R. Casper Math 307 Lecture 18



Review of Last Time
Laplace Transforms of Piecewise Continuous Functions

Differential Equations with Discontinuous Forcing
A Discontinuous Forcing Example

An Example

Example
Find the solution of the initial value problem

2y ′′ + y ′ + 2y = g(t), y(0) = 0, y ′(0) = 0

where

g(t) = u5(t)− u20(t) =


0 if 0 ≤ t < 5
1 if 5 ≤ t < 20
0 if t ≥ 20

W.R. Casper Math 307 Lecture 18



Review of Last Time
Laplace Transforms of Piecewise Continuous Functions

Differential Equations with Discontinuous Forcing
A Discontinuous Forcing Example

An Example

This IVP models the charge on a capacitor in an LCR
circuit where a battery is connected at t = 5 and
disconnected at t = 20
We calculate using y(0) = 0 and y ′(0) = 0

L
{

y ′
}
= sL{y} − y(0) = sL{y} .

and

L
{

y ′′
}
= s2L{y} − sy(0)− y ′(0) = s2L{y} .
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An Example

Moreover

L{g(t)} = L{u5(t)} − L{u20} (t) = e−5s 1
s
− e−20s 1

s

so taking the Laplace transform of both sides of the
original differential equation

2y ′′ + y ′ + 2y = g(t)

gives us

2s2L{y}+ sL{y}+ 2L{y} = e−5s − e−20s

s
.
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An Example

After a little algebra, this tells us

L{y} = e−5s − e−20s

s(2s2 + s + 2)
= (e−5s − e−20s)H(s)

for H(s) = 1/(s(2s2 + s + 2))
Thus if h(t) = L−1 {H(s)}, then

y = L−1
{
(e−5s − e−20s)H(s)

}
= L−1 {e−5sH(s)

}
− L−1

{
e−20sH(s)

}
= h(t − 5)u5(t)− h(t − 20)u20(t)
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An Example

Now using partial fractions

1
s(2s2 + s + 2)

=
a
s
+

bs + c
2s2 + s + 2

,

one easily determines that a = 1/2,b = 1 and c = 1/2, so

H(s) =
1/2
s
−

s + 1
2

2s2 + s + 2
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An Example

The inverse Laplace transform of 1/2
s is easy

The inverse Laplace transform of s+ 1
2

2s2+s+2 is more difficult
How do we find it?
Complete the square in the denominator

s + 1
2

2s2 + s + 2
=

s + 1
2

2(s + 1
4)

2 + 15
8

Factor out a 1/2

s + 1
2

2s2 + s + 2
=

1
2

s + 1
2

(s + 1
4)

2 + 15
16
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Lastly, try to put this in a form that looks like a linear
combination of translations of Laplace transforms of
sin(
√

15t/4) and cos(
√

15t/4)

s + 1
2

2s2 + s + 2
=

1
2

(s + 1
4) +

1
4

(s + 1
4)

2 + 15
16

=
1
2

(s + 1
4)

(s + 1
4)

2 + 15
16

+
1
2

1
4

(s + 1
4)

2 + 15
16

=
1
2

(s + 1
4)

(s + 1
4)

2 + 15
16

+
1

2
√

15

√
15
4

(s + 1
4)

2 + 15
16
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Therefore

s + 1
2

2s2 + s + 2
=

1
2
L
{

e−t/4 cos(
√

15t/4)
}

+
1

2
√

15
L
{

e−t/4 sin(
√

15t/4)
}
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Thus we have shown that

y = h(t − 5)u5(t)− h(t − 20)u20(t)

for

h(t) =
1
2
− 1

2
e−t/4 cos(

√
15t/4)− 1

2
√

15
e−t/4 sin(

√
15t/4)
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Plot of a Solution to IVP

Figure : Plot of Solution to IVP with Discontinuous Forcing
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Review!

Today:
Fun with Laplace Transforms!

Next time:
More fun with Laplace Transforms!
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