
MATH 307: Problem Set #2

Due on: April 5, 2013

Problem 1 Existence and Uniqueness of Solutions to Linear
Equations

For each of the following first order linear initial value problems, determine the largest
open inverval on which we should expect there to be a unique solution.

(a) y′ = sin(x)y + cot(x), y(π/2) = 3

(b) xy′ + 3y = x2, y(1) = 0

(c) y′ = y/x+ x tan(x), y(π/4) = 1

. . . . . . . . .

Solution 1.

(a) (0, π)

(b) (0,∞)

(c) (0, π/2)

Problem 2 Existence and Uniqueness of Solutions to Non-
linear Equations

For each of the following initial value problems, determine with justification which of
the following hold

(i) no solution exists

(ii) a unique solution exists

(iii) multiple solutions exist

(a) y′ = y1/3, y(1) = 0

(b) y′ = y1/3, y(0) = 1



Problem 3 2

(c) yy′ = 1/x, y(0) = 1

. . . . . . . . .

Solution 2.

(a) By separating the equation, we get the solutions y = ±
√(

2
3
x− 2

3

)3
, therefore

multiple solutions exist.

(b) Note that for f(x, y) = y1/3, fy(x, y) = 1
3
y−2/3. Both f(x, y) and fy(x, y) are

well-behaved in the open rectangle

R = {(x, y) : −42 < x < 42, 0 < y < 2}

and therefore by the existence/uniqueness theorem for nonlinear first order equa-
tions, there exists a unique solution to the IVP in some open interval (a, b) with
a < 0 < b.

(c) This differential equation has no solution! To see this, suppose that it has a
solution – call it y. Then z = y2 satisfies

z′ = 2yy′ = 2/x, z(0) = 1.

However by the fundamental theorem of calculus, the only solutions to z′ = 2/x
are of the form z = ln |x| + C, and for no value of C does z(0) = 1. Therefore y
cannot exist.

Problem 3 Fluid Mixing

A 1000 gallon holding tank that catches runoff from some chemical process initially
has 800 gallons of water with 2 ounces of pollution dissolved in it. Polluted water
flows into the tank at a rate of 3 gal/hr and contains 5 ounces/gal of pollution in
it. A well mixed solution leaves the tank at 3 gal/hr as well. When the amount of
pollution in the holding tank reaches 500 ounces the inflow of polluted water is cut
off and fresh water will enter the tank at a decreased rate of 2 gallons per hour while
the outflow is increased to 4 gal/hr. Determine the amount of pollution in the tank
at any time t.

. . . . . . . . .

Solution 3. We will use P to represent the amount of pollutant (in ounces) in the
tank, t the time (in hours), and V the volume of liquid in the tank (in gallons).
Initially, the differential equation for the amount P of pollutant in the tank is given
by

dP

dt
=

rate in︷ ︸︸ ︷
3

gal

hr
· 5 oz

gal
−

rate out︷ ︸︸ ︷
3

gal

hr
· P
V

oz

gal
.
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and satisfies the initial condition that P (0) = 2 ounces. Note that the rate in of
liquid is equal to the rate out of liquid during the first time period, and therefore
V = V (0) = 800. Thus the initial value proble we must solve is

dP

dt
= 15− 3

800
P, P (0) = 2.

The differential equation is separable, and solving it we find

P = 4000 + Ce−(3/800)t.

The initial condition then tells us that C = −3998, and consequently

P (t) = 4000− 3998e−(3/800)t.

Next we wish to find the time when the amount of pollutant in the tank is 500
ounces of pollutant. To do so, we set P (t) = 500 and solve for t:

500 = 4000− 3998e−(3/800)t ⇒ −(3/800)t = −800

3
ln

3500

3998
≈ 35.475 hours.

After this time, the situation in the tank changes. The inflow of pollutant is shut off,
and instead fresh water is let in. The inflow rate is no longer the outflow rate, so the
volume is not constant. In fact, the initial value problem describing the volume is

dV

dt
= 2

gal

hr
− 4

gal

hr
, V (35.475) = 800.

Therefore, we find V (t) = 800 − 2(t − 35.475). The initial value problem for the
amount of pollutant in the tank as a function of time is then

dP

dt
=

rate in︷ ︸︸ ︷
2

gal

hr
· 0 oz

gal
−

rate out︷ ︸︸ ︷
4

gal

hr
· P
V

oz

gal
,

with the initial condition that P (35.475) = 500 ounces. Therefore we must solve the
initial value problem

dP

dt
= −4

P

800− 2(t− 35.475)
, P (35.475) = 500.

Again this is a separable equation, and solving it, we obtain

P (t) = C(800− 2(t− 35.475))2

and the initial condition tells us that C = 500/800. Thus as our final answer for the
amount of pollutant in the tank as a function of time is

P (t) =

{
4000− 3998e−(3/800)t, t ≤ 35.475

500
800

(800− 2(t− 35.475))2, t > 35.475
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Problem 4 More Fluid Mixing

Initially, a mass of ten grams of salt is dissolved in a 10 liter tank full of water. Then
water containing salt at a concentration of 10 grams per liter trickles in at a rate of
two liters per hour. A well-mixed solution trickles out at a rate of 3 liters per hour.
Find the concentration (in grams per liter) of the salt in the tank at the time when
the tank contains 4 liters.

. . . . . . . . .

Solution 4. We will let S be the amount of salt in the tank as a function of time
(in grams), and Q be the concentration of salt in the tank (in grams/liter), and V
be the volume of water in the tank (in liters), and t time (in hours). Since the rate
in of liquid is different from the rate out, we know that V is not constant. In fact V
satisfies the IVP

dV

dt
= 2− 3, V (0) = 10.

Solving this, we find V (t) = 10 − t. Next, we set up a differential equation for the
amount of salt S in the tank as a function of time. We see that

dS

dt
=

rate in︷ ︸︸ ︷
2

ltr

hr
· 10

g

ltr
−

rate out︷ ︸︸ ︷
3

ltr

hr
· S
V

g

ltr
,

with the initial condition othat S(0) = 10. Therefore the initial value problem we
must solve is

dS

dt
= 20− 3

10− t
S, S(0) = 10.

This equation is not separable, but it is linear, so we can solve it with an integrating
factor. We calculate

µ(t) = e
∫

3
10−tdt = e−3 ln(10−t) = (10− t)−3.

Multiplying the original differential equation by µ, we get the exact equation

(10− t)−3dS
dt

= 20(10− t)−3 − 3(10− t)−4S.

We then move the S-terms over to the left hand side, group, and integrate:

(10− t)−3S ′ + 3(10− t)−4S = 20(10− t)−3

((10− t)−3S)′ = 20(10− t)−3

(10− t)−3S = 10(10− t)−2 + C

S = 10(10− t) + C(10− t)3

Now the initial condition tells us C = −9/100, and therefore

S = 10(10− t)− 9

100
(10− t)3.
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The concentration as a function of time is therefore Q = S/V , giving us

Q =
S

V
= 10− 9

100
(10− t)2.

The tank reaches a volume of 4 liters after exactly 6 hours. The concentration at
this time is then seen to be

Q(6) = 10− 9

100
(10− 6)2 =

214

25
≈ 8.56 g per liter.

Problem 5 Monetary Investment

A young person with no initial capital invests k dollars per year at an annual rate
of return r. Assume that investments are made continuously and that the return is
compounded continuously.

(a) Determine the sum S(t) accumulated at any time t

(b) If r = 7.5% determine k so that 1 million will be available for retirement in 40
years

(c) If k = 2000 per year, determine the return rate r that must be obtained to have
1 million available in 40 years

. . . . . . . . .

Solution 5.

(a) Let t be time in years. Then S satisfies the differential equation

dS

dt
= rS + k,

which has the integrating factor µ(t) = e−rt. Using this to solve:

−re−rtS + ert
dS

dt
= ke−rt(

e−rtS
)′

= ke−rt∫ (
e−rtS

)′
dt =

∫
ke−rtdt

e−rtS = −k
r
e−rt + C

S = −k
r

+ Cert

Since there is no initial capital, S(0) = 0, and therefore C = k/r, making

S =
k

r

(
ert − 1

)
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(b) Given that r = 0.075, we want S(40) = 106. Solving for k we obtain

106 =
k

0.075

(
e0.075∗40 − 1

)
106 = 254.474k

k = 3929.68 dollars per year

(c) Given that k = 2000, we want S(40) = 106. Solving for r we obtain

106 =
2000

r

(
er∗40 − 1

)
r = 0.097734

So we’d need a rate of 9.7734%.

Problem 6 More Fluid Mixing

A 1500 gallon tank initially contains 600 gallons of water with 5 lbs of salt dissolved
in it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has
a salt concentration of 1

5
(1 + cos(t)) lbs/gal. If a well mixed solution leaves the tank

at a rate of 6 gal/hr, how much salt is in the tank when it overflows?

. . . . . . . . .

Solution 6. Notice first of all that more water enters the tank than leaves the tank.
In fact, the volume satisfies the differential equation

dV

dt
=

gal/hr in︷︸︸︷
9 −

gal/hr out︷︸︸︷
6 ,

and therefore dV
dt

= 3, so that V = 3t+ V0, where V0 is the initial volume (V0 = 600).
Thus

V = 3t+ 600.

The weight W of of salt in the tank (in pounds) satisfies the differential equation

dW

dt
= rate in − rate out,

where

rate in =

lbs salt/gallon in︷ ︸︸ ︷
1

5
(1 + cos(t))×

gal/hr in︷︸︸︷
9

and

rate out =

lbs salt/gallon out︷︸︸︷
W

V
×

gal/hr out︷︸︸︷
6 .
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Thus
dW

dt
=

9

5
(1 + cos(t))− 2W

t+ 200

This equation is linear! An integrating factor is µ(t) = (t+200)2. Using this to solve,
we get

2(t+ 200)W + (t+ 200)2
dW

dt
=

9

5
(1 + cos(t))(t+ 200)2

((t+ 200)2W )′ =
9

5
(1 + cos(t))(t+ 200)2∫

((t+ 200)2W )′dt =

∫
9

5
(1 + cos(t))(t+ 200)2dt

(t+ 200)2W =
9

5
(t+ 200)2 sin(t) +

18

5
(t+ 200) cos(t)

− 18

5
sin(t) +

9

5
(t+ 200)3 + C

so that

W =
9

5
sin(t) +

18

5

cos(t)

t+ 200
− 18

5

sin(t)

(t+ 200)2
+

9

5
(t+ 200) + C

Sinc initially there are 5 pounds of salt dissolved in the tank W (0) = 5, so that

5 =
18

5

1

200
+

9

5
(200) + C

and therefore C = −355.018, making

W =
9

5
sin(t) +

18

5

cos(t)

t+ 200
− 18

5

sin(t)

(t+ 200)2
+

9

5
(t+ 200)− 355.018

Now from our equation for V , we know that the tank overflows at t = 300. Evaluating
W (300), we obtain

W (300) = 543.182 lbs

Problem 7 Challenger Deep

An intrepid research team plans to explore the Challenger Deep, located at the south-
ern end of the Mariana Trench. The ocean floor is as deep as 10.916 kilometers,
making it the deepest point in the ocean floor. (In comparison, the avrage depth of
the ocean is 3.688 kilometers)

The research team will pilot a spherical vessel with a radius r and mass m. The
force of gravity will do the work in bringing the vessel to the bottom. For this problem,
you may make the following assumptions

(i) the density of ocean water is ρ = 1027 kg/m3

(ii) the gravitational acceleration is g = 9.81 m/s2
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(iii) the dynamic viscosity of ocean water is µ = 1.88× 10−3 kg/(m·s)

(iv) the force of drag satisfies Stokes law FD = −6πµrv, where v is the flow velocity

(v) the crew are not attacked by a sea monster on the descent

With this in mind, answer the following questions

(a) find an equation, in terms of r and m, for how long it takes the vessel to reach
the ocean floor

(b) if r = 1.1 meters, and m is 11.8 tonnes, how long will the descent take?

Solution 7.

(a) Newton tells us F = ma, where m is the mass of the sub and a = v′ is the
acceleration. The forces the sub experiences are gravitational force

Fg = −mg,

bouyant force

Fb =
4

3
πr3ρg,

and the force of drag, which according to Stokes law is

Fd = −6πµrv.

Therefore

mv′ =
4

3
πr3ρg −mg − 6πµrv.

This is a separable equation in v: the solution is

v = Ce−
6πµr
m

t +
−mg + 4

3
πr3ρg

6πµr
.

The initial velocity is 0, so

v =
−mg + 4

3
πr3ρg

6πµr

(
1− e−

6πµr
m

t
)
.

The y-position as a function of time is the integral of v, and the initial y position
is 0, so

y =
−mg + 4

3
πr3ρg

6πµr
(

1 + m
6πµr

) (t− e− 6πµr
m

t
)
.

The vessel is at the bottom when y = 10, 916 meters, and therefore the time tf
when it hits the bottom is obtained from solving

−10916 =
−mg + 4

3
πr3ρg

6πµr
(

1 + m
6πµr

) (tF − e− 6πµr
m

tF
)
.

This cannot be solved for tF by hand – we have to use a computer.
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(b) Based on the previous equation, the descent time is approximately 2163 seconds,
which is approximately 36 minutes. This descent time is faster than it would be
in reality because the linear model that we used for the drag is inaccurate when
the Reynolds number Re = ρvL/µ is large, as it is in this situation. We should
have instead used a quadratic model for the drag force to get more physically
accurate results.

. . . . . . . . .

Problem 8 Jean Wilder’s Famous Problem

A population of Oompa Loompas in a region will grow at a rate that is proportional
to their current population. In the absence of any outside factors the population
will triple in two weeks time. Also on any given day there is a net migration into
the area of 15 Oompa Loompas and 16 are eaten by Wangdoodles, Hornswogglers,
Snozzwangers and rotten, Vermicious Knids and 7 die of natural causes. If there are
initially 100 Oompa Loompas in the area, will the population survive? If not, when
do they die out?

. . . . . . . . .

Solution 8. Let nO be the number of Oompa Loopas in our region, and let t be time
in days. Then they satisfy the differential equation

dnO
dt

= increase− decrease

where

increase =

growth due to breeding︷︸︸︷
rnO +

growth from migration︷︸︸︷
15

and

decrease =

killed by terrifying monsters︷︸︸︷
16 +

die of natural causes︷︸︸︷
7 .

Here r is the growth rate. Thus

dnO
dt

= rnO − 8.
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An integrating factor for this solution is µ(t) = e−rt. Using this to solve, we get

−re−rtnO + e−rt
dnO
dt

= −8e−rt

(e−rtnO)′ = −8e−rt∫
(e−rtnO)′dt =

∫
−8e−rtdt

e−rtnO =
8

r
e−rt + C

nO =
8

r
+ Cert

Since nO(0) = 100, we know that C = 100− 8
r
, and therefore

nO =
8

r
+

(
100− 8

r

)
ert.

What is r, though? Outside external influences (such as birth, death, predator inter-
action, and migration), the population would satisfy the IVP

n′O = rn0, n0(0) = 100,

which has the solution nO = 100ert. From the question, we know that in this case
the population should triple in 14 days (2 weeks), so that nO(14) = 300. Thus
300 = 100e14r, making r = ln(3)/14. Thus the population actually satisfies

nO =
8

ln(3)/14
+

(
100− 8

ln(3)/14

)
ert.

or approximately

nO = 101.947− 1.947e
ln(3)
14

t.

This is decreasing, so the population dies out! Setting nO = 0 and solving for t, we
find that no more Oompa Loompas are left after about 50.442 days.

Problem 9 Bernoulli Equations

A Bernoulli equation is a nonlinear equation of the form

y′ + p(t)y = q(t)yn

If n 6= 0 and n 6= 1, then substituting u = y1−n and differentiating yeilds

u′ = (1− n)y−ny′.

This tells us that y′ = yn

(1−n)u
′. Putting this back into the original differential equation

then says
yn

1− n
u′ + p(t)y = q(t)yn.
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Dividing both sides by y, we then get

yn−1

1− n
u′ + p(t) = q(t)yn−1.

Now if we notice that yn−1 = 1/u, then this means

1/u

1− n
u′ + p(t) = q(t)(1/u),

which simplifies to
1

1− n
u′ + p(t)u = q(t),

which is a linear equation in u. We’ve just made a nonlinear equation into a linear
equation... a small miracle. We can then solve for u, and then use the fact that
u = y1/n to obtain y. Let’s call this method “Bernoulli’s method”.

(a) Use Bernoulli’s method to solve the differential equation

y′ = (Γ cos(t) + T )y − y3

where here Γ and T are constants. This equation comes up in the study of
stability in fluid flows.

. . . . . . . . .

Solution 9.

(a) We do the substitution u = y−2, so that

u′ = −2y−3y′

and

y′ = −1

2
y3u′

Substituting this into the original differential equation for y′, we get

−1

2
y3u′ = (Γ cos(t) + T )y − y3.

Dividing through by y3 on both sides, this becomes

−1

2
u′ = (Γ cos(t) + T )y−2 − 1.

Now remembering u = y−2:

−1

2
u′ = (Γ cos(t) + T )u− 1.
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which simplifies to
1

2
u′ + (Γ cos(t) + T )u = 1.

This equation is linear! An integrating factor for this equation is

µ(t) = exp (2Γ sin(t) + 2Tt) ,

and using this to solve the equation, we get

u =
1

exp (2Γ sin(t) + 2Tt)

∫
exp (2Γ sin(t) + 2Tt) dt

so that

y =

√
exp (2Γ sin(t) + 2Tt)∫
exp (2Γ sin(t) + 2Tt) dt

Problem 10 Norton’s Dome

Norton’s Dome is a radially symmetric surface whose height above the ground is of
the form

h(r) = −2K

3g
r3/2

where r is the radial distance from the center of the dome and our coordinate system
is chosen so that the top of the dome has height h = 0. here K is a proportionality
factor, so that (K/g) has units of length. Set a point mass on top of the dome and

Figure 1: A picture of Norton’s Dome.

let it slide down from the force of gravity, assuming that there are no friction forces.
From the laws of classical mechanics, the radial position r(t) of the point mass may
be shown to satisfy the initial value problem

r′′ = K
√
r, r(0) = 0, r′(0) = 0.

(a) Show that r(t) = K2t4/144 is a solution to the initial value problem

(b) Show that r(t) = 0 is also a solution to the initial value problem
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In fact, for any ` ≥ 0

r(t) =

{
0, t < `

K2(t− `)4/144, t ≥ `

is also a solution to the initial value problem (you need not show this). This is an
example of what is called non-determinism in classical mechanics. There is no unique
solution to the differential equation: from the point of view of mathematics, the point
particle could simply sit there for all eternity, or it could sit there for some arbitrary
amount of time and then suddenly roll off for no particular reason! To learn more
about this, try googling Norton’s Dome.

. . . . . . . . .

Solution 10.

(a) r′′(t) = K2t2/12 and K
√
r = K2t2/12, so r satisfies the differential equation.

Also, r(0) = r′(0) = 0, so it satisfies the IVP.

(b) r′′(t) = 0 and K
√
r = 0, and r(0) = r′(0) = 0, so r = 0 also satisfies the IVP.
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