MATH 307: Problem Set #5

Due on: May 18, 2015

Problem 1 Annihilating Operators

For each of the following, find a nonzero linear ordinary differential operator with constant coefficients which annihilates the specified function

(a) 13

- (b) e^{4t}
- (c) $\sin(2t)$
- (d) te^t

• • • • • • • • •

Problem 2 Annihilating Operators

For each of the following, use the method of annihilating operators to determine a form for the particular solution y_p

- (a) $y'' 2y' 3y = 5e^{2t}$ (b) $y'' - 2y' - 3y = 17e^{-t}$ (c) $y'' + 2y' + 5y = \cos(2t)$
- (d) $y'' + 2y' + y = 2e^{-t}$

• • • • • • • • •

Problem 3 Method of Undetermined Coefficients: General Solutions

In each of the following, find the general solution of the given differential equation

(a)
$$y'' - 2y' - 3y = 3e^{2t}$$

(b) $y'' - 2y' - 3y = -3te^{-t}$
(c) $y'' - 2y' - 3y = te^{-t} + 7e^{2t}$
(d) $y'' - 2y' - 3y = 2te^{-t} - 3e^{2t}$
(e) $y'' - 2y' - 3y = 4te^{-t} + e^{2t}$
(f) $y'' + 2y' + 5y = \sin(2t)$
(g) $y'' + 2y' + 5y = \cos(2t)$
(h) $y'' + 2y' + 5y = 4\sin(2t) + 7\cos(2t)$
(i) $y'' + 2y' = 3 + 4\sin(2t)$
(j) $y'' + 2y' + y = 2e^{-t}$
(k) $y'' + y = 3\sin(2t)$
(l) $y'' + y = 3\sin(2t)$
(m) $y'' + y = 3\sin(2t) + t\cos(2t)$
(m) $y'' - y' - 2y = e^{t}$
(o) $y'' - y' - 2y = e^{-t}$
(p) $y'' - y' - 2y = \cosh(t)$ [Hint: $\cosh(t) = (e^{t} + e^{-t})/2$]

Problem 4 Method of Undetermined Coefficients: Initial Value Problems

In each of the following, find the solution of the given initial value problem

(a) $y'' + 4y = t^2 + 3e^t$, y(0) = 0, y'(0) = 2(b) $y'' - 2y' - 3y = 3te^{2t}$, y(0) = 1, y'(0) = 0(c) $y'' + 2y' + 5y = 4e^{-t}\cos(2t)$, y(0) = 1, y'(0) = 0

••••

Problem 5 More differential operator techniques

Using differential operators to convert each of the following to a system of two first-order equations. Then solve it.

(a) $y'' - 3y' - 4y = 3e^{2t}$

(b) $y'' + 2y' + y = 2e^{-t}$

.