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Today!

Last time:
Damped and undamped vibrating springs

This time:
More on Mechanical and Electrical Vibrations

Next time:
More on Forced Vibrations
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Outline
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Review of Damped Mass-Spring Systems

Figure: A Mass Spring
System

Equation of motion of a
damped mass-spring
system:

mu′′ + γu′ + ku = 0.

u: length of the mass spring
system (relative to the
resting length)
m: mass (not weight!)
γ: drag coefficient
k : spring constant
m, γ, k all nonnegative
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Affect of Drag

The value of γ controls what the motion of the spring looks
like!
When γ = 0, we have an ideal system
When γ is small, we have a (weakly) damped mass spring
system
When γ is large, we have an overdamped mass spring
system
We illustrate each of these motions with the next example!
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Example: Introduction

Example
Suppose a mass spring system has mass m kg, spring constant
k N/m, and drag coefficient γ N·s/m. The system is stretched 1
meter from its resting length and then released. Determine u
(its length relative to its resting length) as a function of time.

u (in meters) will be a solution to the initial value problem

mu′′ + γu′ + ku = 0, u(0) = 1, u′(0) = 0.

How does the solution to this IVP depend on γ?
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Example: When γ = 0

Suppose γ = 0.
Then the mass-spring system is ideal
Satisfies the equation

mu′′ + ku = 0, u(0) = 1, u′(0) = 0.

Solution is (for ω =
√

k/m)

u = cos(ωt)

Check this!
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Plot of spring motion

Figure: Spring motion with no drag (m = k = 1, γ = 0)

W.R. Casper Math 307 Lecture 16



Example: When γ is small

Suppose γ is small compared to k and m
To be concrete, let’s take m = k = 1 and γ = 0.2
Then the mass-spring system is damped
Satisfies the equation

u′′ + 0.2u′ + u = 0, u(0) = 1, u′(0) = 0.

Roots of the corresponding characteristic equation are

r = −0.1±
√

0.99i
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Example: When γ is small

General solution is therefore

u = Ae−0.1t cos(
√

0.99t) + Be−0.1t sin(
√

0.99t)

Initial conditions imply A = 1 and B = 0.1/
√

0.99 (check!)
So the solution to the IVP is

u = e−0.1t cos(
√

0.99t) +
0.1√
0.99

e−0.1t sin(
√

0.99t)

This form of the equation is harder to understand...
We use some trig to write a simpler expression for this!
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Example: When γ is small

Remember: we can rewrite

A cos(µt) + B sin(µt)

in the form
R cos(µt − δ)

by taking R =
√

A2 + B2, δ = tan−1(B/A).

Using this, our previous solution is

u = e0.1t

√
100
99

cos(
√

0.99t − δ),

for δ = tan−1(0.1/
√

0.99) ≈ 0.10017
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Plot of spring motion

Figure: Spring motion with no drag (m = k = 1, γ = 0.1)
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Example: When γ is large

Suppose γ is large compared to k and m
To be concrete, let’s take m = k = 1 and γ = 2.5
Then the mass-spring system is overdamped
Satisfies the equation

u′′ + 2.5u′ + u = 0, u(0) = 1, u′(0) = 0.

Roots of the corresponding characteristic equation are

r1 = −1/2, r2 = −2
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Example: When γ is large

General solution is therefore

u = Ae−t/2 + Be−2t

Initial conditions imply A = 4/3 and B = −1/3 (check!)
So the solution to the IVP is

u =
4
3

e−t/2 − 1
3

e−2t

This isn’t trigonometric at all!
That’s why we call it overdamped
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Plot of spring motion

Figure: Spring motion with no drag (m = k = 1, γ = 2.5)
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How big is gamma for overdamping?

Given a damped spring equation

mu′′ + γu′ + ku = 0,

The roots of the corresponding characteristic polynomial
are

r =
−γ ±

√
γ2 − 4km

2m

We get trig functions if and only if the discriminant
γ2 − 4km is negative
Therefore overdamping occurs when γ ≥ 2

√
km
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LCR-circuits

An LCR circuit involves a
resistor, capacitor, inductor,
and voltage source
L: inductance of inductor (in
henrys [H])
C: capacitance of capacitor
(in farads [F])
R: resistance of resistor (in
ohms [Ω])
E(t): voltage gain from
energy source (in volts [V])
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LCR-circuits

By Kirchhoff’s law, the sum of the voltage drops and gains
must be zero:

Vind + Vcap + Vres + Vsource = 0

By convention, voltage drops are positive, and gains are
negative (Vsource = −E(t))
From elementary electromagnetism:

Vind = L dI
dt

Vcap = Q/C
Vres = IR

where Q is the charge on the capacitor
and I = dQ/dt is the current in the circuit
both I and Q are functions of time
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LCR-circuits

Thus
L

dI
dt

+ IR + Q/C − E(t) = 0.

Differentiating with respect to time, and replacing dQ/dt
with I, this becomes

L
d2I
dt2 + R

dI
dt

+
1
C

I − E ′(t) = 0.

In particular, when E is constant, this equation becomes

L
d2I
dt2 + R

dI
dt

+
1
C

I = 0.

Very similar to the equation of a damped spring system!
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A note on initial conditions

To find the current as a function of time, we’ll need to
change this into an initial value problem
Therefore, we’ll want I(0) (the initial current)
and also I′(0) (the initial derivative of current)
Sometimes, we won’t know I′(0), but we will know the
initial charge Q on the capacitor
Then we can use the equation

L
dI
dt

+ RI + Q/C − E(t) = 0

to solve for dI/dt at the initial time

W.R. Casper Math 307 Lecture 16



LCR-circuit example

Example
Suppose that an LCR-circuit has a 1 H inductor, a 1 F
capacitor, and a 0.125Ω resistor. Also suppose that the initial
current on this circuit is 2 amp (A), and that the initial charge on
the capacitor was 0.125 coulombs (C). If the source voltage
E = 0.25 is constant, determine the current I of the circuit as a
function of time.

We have L = 1, C = 1, and R = 0.125. Also I(0) = 2 and

I′(0) =
E(0)− RI(0)−Q(0)/C

L
=

0.25− 0.125− 0.125
1

= 0.

So I is a solution of the initial value problem

I′′ + 0.125I′ + I = 0, I(0) = 2, I′(0) = 0.
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LCR-circuit example

We’ve solved this initial value problem before (on Monday),
in the context of spring equations

The roots of the characteristic polynomial are −1
16 ±

√
255
16 i .

This means that the general solution is

u = e−t/16

[
A cos

(√
255
16

t

)
+ B sin

(√
255
16

t

)]
.

To satisfy the initial conditions, we must choose A = 2 and
B = 2/

√
255

Then the solution of the initial value problem is

u = e−t/16

[
2 cos

(√
255
16

t

)
+

2√
255

sin

(√
255
16

t

)]
.
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An Example

Using our trig stuff with R =
√

A2 + B2 and
δ = tan−1(B/A), we find

u =
32√
255

e−t/16 cos

(√
255
16

t − δ

)

where δ = tan−1 1√
255
≈ 0.0625
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Plot of spring motion

Figure: Current in the LCR circuit L = 1, C = 1, R = 0.125, E = 0.25,
with the initial condition E(0) = 2 and Q(0) = 0.125
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Try it Yourself

Example

An LCR-circuit has a capacitor of 0.25× 10−6 F and an
inductor of 1 H, no resistor, and no source voltage. If the initial
charge on the capacitor is 10−6 C, and there is no initial
current, find the charge Q on the capacitor at any time t .

Give it a shot!
Hint: it might be helpful to work with the equation

L
dI
dt

+ RI + Q/C − E(t) = 0,

by replacing I with dQ/dt
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Review!

Today:
More on mechanical and electrical vibrations

Next time:
Forced vibrations
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