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Last time:
@ Step Functions
This time:
@ Laplace Transforms of Discontinuous Functions
@ Differential Equations with Discontinuous Forcing
Next time:
@ More on Discontinuous Forcing
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Step Functions and Hat Functions

@ Last time we defined a step function to be a function of the

form f
0 ift<e
“C(t)_{ 1 ift>c

@ And a hat function to be a function of the form

0, ift<a
hap(t) = ua(t) —up(t)=¢ 1, ifast<b
0, ift>b
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Plot of a Step Function

Figure: Plot of step function uc(t)
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Plot of a Hat Function

Figure: Plot of hat function hg (1)
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Brackets to Step Functions Example

@ Last time we also learned how to convert from a function
defined this way:

- sin(t) fo<t<m/4
f(t) = { sin(t) + cos(t —n/4) ift>m/4

@ To a function defined this way

f(t) = sin(t)up(t) + cos(t — m/4)u, 4(t)
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Try it Yourself!

Convert the following functions from bracket form to step
function form:

(]
1 ifo<t<?2

“”:{e(f@inzz

t ifo<t<1

t—1 if1<t<?2

ft) = -2 if2<t<3
0 ift>3
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Laplace Transform of f(t — c)u.(t)

@ Suppose that f(t) is a piecewise continuous functions of
exponential type, and that ¢ > 0. Then

@ We wish to calculate the Laplace transform of f(t — c)uc(t)
@ Computation first shows

LAt — ) ug(t)} = / e~SIf(t — ¢)ug(t)dt

:/C e S'f(t — c)dt
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Laplace Transform of f(t — c)u.(t)

@ Now if we do the u-substitution u = t — ¢, then du = dt and
LAt — S)us(t)} = / =S (1) dlu
0
_ g0 / e~SUF(U)du = 5L {(1)} .
0

@ To summarize

LIf(t— c)ue(t)} = e~°L {£(1)} .

@ And consequently for £ {f(t)} = F(s),

L7VF(s)e™*°} = f(t — c)uc(t)
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Laplace Transform of ef(t)

@ Let F(s) be the Laplace transform of f(¢)
@ We wish to calculate the Laplace transform of f(t)e®
@ Computation first shows

£{e?f(t)) = /O " esteot (1)t

_ / e~ 5-9f(1)at = F(s — c)
0

@ To summarize £ {f(t)e®} = F(s —c),
@ And consequently £~ {F(s — ¢)} = e°f(t)
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Summary of Additional Laplace Transform Properties

Additional Laplace transform properties:

o
LAf(t - c)uc(t)} = e L {f(t)}
°
£ {e F(s)} = f(t — c)uc(t)
°
L{f(t)e®} = F(s—c)
°

L7 {F(s—c)} = e%f(t)
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A First Example

Find the Laplace transform of

- sin(t) ifo<t<m/4
f(t) = { sin(t) + cos(t —r/4) ift > m/4

@ As we saw earlier, we may write

f(t) = sin(t)uop(t) + cos(t — m/4)uy 4(t)
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A First Example

@ So what will it’s Laplace transform look like?

@ Using the Laplace transform of step functions, we see that
its Laplace transform is

LA{f(t)} = L{sin(t)uo(t)} + £ {cos(t — 7/4)uy (1)}
= e 952 {sin(t)} + e "5/*L {cos(t)}

1 —7s/4
s2 +1 s2 +1
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A Second Example

Find the inverse Laplace transform of

1-e28
F(s) = 2

@ We first write ] ]
_ _2s
F(s) = 2 ¢ =

@ Also recall that £ {t} = 1

52
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A Second Example

@ Therefore we calculate

£(t) _ 1 (F(s)} = L1 {312} _ 1 {9—231}
=1—U(t)(t—-2)

@ We can but this back into the bracket notation as

tift<2
“”:{ziuzz
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A Third Example

Find the inverse Laplace transform of

1
Fls) = s2—4s5+5

@ We first write ’

FO= s2p 1

1

@ Therefore we can write F(s) = G(s — 2) for G(s) = e

@ Since L~ {G(s)} = sin(t), it follows that

L7V{F(s)} =L 1{G(s - 2)} = é*'sin(t).
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Laplace Transform Examples

Find the Laplace Transforms of the following functions

o
B 0 ift<2

f(’)—{ (t—22 ift>2

0 ift<m
f(t)y=< t—n ifr<t<2nm
0 if t >2n
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Inverse Laplace Transform Examples

Find the Inverse Laplace Transforms of the following functions
°

31
Fs) = (s —2)*
° 2(s—1)e 2
Fls) = s(:—_zs)iz
o By
Fis) s(2s = 4ie+ 3
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An Example

Find the solution of the initial value problem

2y" +y' +2y=9(t), y(0)=0, y'(0)=0
where

0 if0<t<5

gty =us(t) —up(t) =< 1 f5<t<20
0 ift>20
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An Example

@ This IVP models the charge on a capacitor in an LCR
circuit where a battery is connected at t = 5 and
disconnected at t = 20

@ We calculate using y(0) =0and y’(0) =0

£{y'} =sL{y}—y(0)=sL{y}.

@ and

L{y"t =s2L{y} —sy(0) - y'(0) = L {y}.
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An Example

@ Moreover

L{g(t)} = £ {us(t)} — £ {u0} (1) = -5s1s _ e_zoSl

@ so taking the Laplace transform of both sides of the
original differential equation

2y"+y' +2y =g(t)

@ gives us
e—SS o e—205

282L{y} +sL{y} +2L{y} = S

W.R. Casper Math 307 Lecture 19



An Example

@ After a little algebra, this tells us

e—55 . e—203

L{y} = = (e7°° — e #*)H(s)

5(28%2 + s+ 2)

@ for H(s) = 1/(s(28? + s + 2))
@ Thusif h(t) = £~ {H(s)}, then

y =L {(efss _ efZOS)H(S)}
_ - {e_5sH } -1 e_QOSH(s)}
= h(t — 5)us(t) — h(t — 20)uso(1)
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An Example

@ Now using partial fractions

1 a bs+c

s22+5+2) s 28+s+2

@ one easily determines thata=1/2,b=1and c=1/2, so

12 s+
s 252 4542

H(s)
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An Example

@ The inverse Laplace transform of ﬂ is easy

@ The inverse Laplace transform of is more difficult

@ How do we find it?

2 2+ +2
@ Complete the square in the denominator

s+3 S+3
282 +5+2 2(s+ 12+ 1

@ Factorouta 1/2

S+% 1 S+§

22 +5+2 2(s+1)2+13
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An Example

@ Lastly, try to put this in a form that looks like a linear
combination of translations of Laplace transforms of

sin(v/15t/4) and cos(v/15t/4)

LA BENRNCES s §

2524542 2(S—|— )2—'_%
S M
2(s+ 12+ 2(s+12+ 1
BRNCEY N v
2(s+ 12+ 2/15(s+ 12+ 8
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An Example

@ Therefore
1
st _1, {e*t/“ cos(\/15t/4)}

22 +54+2 2
]
+—rle /4sin(vV15t/4
G UER)
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An Example

@ Thus we have shown that

y = h(t —5)us(t) — h(t — 20) (1)

o for
y

h(t) = 5 - %efw cos(V15t/4) — 2\11ﬁ58t/4 sin(v/15t/4)
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Plot of a Solution to IVP

Figure: Plot of Solution to IVP with Discontinuous Forcing
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Review!

Today:

@ Fun with Laplace Transforms!
Next time:

@ More fun with Laplace Transforms!
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