
MATH 307: Problem Set #2

Due on: Jan 27, 2016

Problem 1 Exact Equations

In each of the following, determine if the equation is exact. If it is exact, then find
the solution.

(i) (2x+ 4y) + (2x− 2y)y′ = 0

(ii) (2xy2 + 2y) + (2x2y + 2x)y′ = 0

(iii) dy
dx

= −ax−by
bx−cy

(iv) (ex sin y + 3y)dx− (3x− ex sin y)dy = 0

(v) (y/x+ 6x)dx+ (ln(x)− 2)dy = 0

(vi) xdx
(x2+y2)3/2

+ ydy
(x2+y2)3/2

= 0

. . . . . . . . .

Solution 1.

(i) My = 4 but Nx = 2, so this is not exact

(ii) My = 4xy + 2 and Nx = 4xy + 2, so this is exact. Therefore there exists a
function ψ(x, y) satisfying ψx = M and ψy = N . Thus

ψ(x, y) =

∫
(2xy2 + 2y)∂x = x2y2 + 2xy + h(y)

for some unknown function h. Then

ψy =
∂

∂y
(x2y2 + 2xy + h(y)) = 2x2y + 2x+ h′(y),

and since ψy = N , we must have

2x2y + 2x+ h′(y) = 2x2y + 2x.
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Hence h′(y) = 0, meaning that h is a constant which we can take to be zero. Thus
ψ(x, y) = x2y2 + 2xy, and the solution to to the original differential equation is
ψ(x, y) = C, ie.

x2y2 + 2xy = C

where C is an arbitrary constant.

(iii) We rewrite this equation as

ax− by
bx− cy

+ y′ = 0

Then My = (ac−b2)x
(bx−cy)2 and Nx = 0, so this is not exact

(iv) My = ex cos(y) + 3 and Nx = −3 + ex sin(y), so this is not exact

(v) My = 1/x and Nx = 1/x, so this is exact Therefore there exists a function
ψ(x, y) satisfying ψx = M and ψy = N . Thus

ψ(x, y) =

∫
(ln(x)− 2)∂y = y ln(x)− 2y + g(x)

for some unknown function g. Then

ψx =
∂

∂x
(y ln(x)− 2y + g(x)) = y/x+ g′(x),

and since ψx = M , we must have

y/x+ g′(x) = y/x+ 6x

Hence g′(x) = 6x, so we can take g(x) = 3x2. Thus ψ(x, y) = y ln(x)−2y+3x2,
and the solution to to the original differential equation is ψ(x, y) = C, ie.

y ln(x)− 2y + 3x2 = C

where C is an arbitrary constant.

(vi) My = −3xy
(x2+y2)5/2

= Nx, so this is exact. Therefore there exists a function ψ(x, y)

satisfying ψx = M and ψy = N . Thus

ψ(x, y) =

∫ (
x

(x2 + y2)3/2

)
∂x =

−1

(x2 + y2)1/2
+ h(y)

for some unknown function h. Then

ψy =
∂

∂y

(
−1

(x2 + y2)1/2
+ h(y)

)
=

y

(x2 + y2)3/2
+ h′(y),

and since ψy = N , we must have

y

(x2 + y2)3/2
+ h′(y) =

y

(x2 + y2)3/2
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Hence h′(y) = 0, so h is constant, and we can take it to be zero. Thus ψ(x, y) =
−1

(x2+y2)1/2
, and the solution to to the original differential equation is ψ(x, y) = C,

ie.
−1

(x2 + y2)1/2
= C

where C is an arbitrary constant.

Problem 2 Fluid Mixing

A 1000 gallon holding tank that catches runoff from some chemical process initially
has 800 gallons of water with 2 ounces of pollution dissolved in it. Polluted water
flows into the tank at a rate of 3 gal/hr and contains 5 ounces/gal of pollution in
it. A well mixed solution leaves the tank at 3 gal/hr as well. When the amount of
pollution in the holding tank reaches 500 ounces the inflow of polluted water is cut
off and fresh water will enter the tank at a decreased rate of 2 gallons per hour while
the outflow is increased to 4 gal/hr. Determine the amount of pollution in the tank
at any time t.

. . . . . . . . .

Solution 2. We will use P to represent the amount of pollutant (in ounces) in the
tank, t the time (in hours), and V the volume of liquid in the tank (in gallons).
Initially, the differential equation for the amount P of pollutant in the tank is given
by

dP

dt
=

rate in︷ ︸︸ ︷
3

gal

hr
· 5 oz

gal
−

rate out︷ ︸︸ ︷
3

gal

hr
· P
V

oz

gal
.

and satisfies the initial condition that P (0) = 2 ounces. Note that the rate in of
liquid is equal to the rate out of liquid during the first time period, and therefore
V = V (0) = 800. Thus the initial value proble we must solve is

dP

dt
= 15− 3

800
P, P (0) = 2.

The differential equation is separable, and solving it we find

P = 4000 + Ce−(3/800)t.

The initial condition then tells us that C = −3998, and consequently

P (t) = 4000− 3998e−(3/800)t.

Next we wish to find the time when the amount of pollutant in the tank is 500
ounces of pollutant. To do so, we set P (t) = 500 and solve for t:

500 = 4000− 3998e−(3/800)t ⇒ −(3/800)t = −800

3
ln

3500

3998
≈ 35.475 hours.
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After this time, the situation in the tank changes. The inflow of pollutant is shut off,
and instead fresh water is let in. The inflow rate is no longer the outflow rate, so the
volume is not constant. In fact, the initial value problem describing the volume is

dV

dt
= 2

gal

hr
− 4

gal

hr
, V (35.475) = 800.

Therefore, we find V (t) = 800 − 2(t − 35.475). The initial value problem for the
amount of pollutant in the tank as a function of time is then

dP

dt
=

rate in︷ ︸︸ ︷
2

gal

hr
· 0 oz

gal
−

rate out︷ ︸︸ ︷
4

gal

hr
· P
V

oz

gal
,

with the initial condition that P (35.475) = 500 ounces. Therefore we must solve the
initial value problem

dP

dt
= −4

P

800− 2(t− 35.475)
, P (35.475) = 500.

Again this is a separable equation, and solving it, we obtain

P (t) = C(800− 2(t− 35.475))2

and the initial condition tells us that C = 500/800. Thus as our final answer for the
amount of pollutant in the tank as a function of time is

P (t) =

{
4000− 3998e−(3/800)t, t ≤ 35.475

500
800

(800− 2(t− 35.475))2, t > 35.475

Problem 3 More Fluid Mixing

Initially, a mass of ten grams of salt is dissolved in a 10 liter tank full of water. Then
water containing salt at a concentration of 10 grams per liter trickles in at a rate of
two liters per hour. A well-mixed solution trickles out at a rate of 3 liters per hour.
Find the concentration (in grams per liter) of the salt in the tank at the time when
the tank contains 4 liters.

. . . . . . . . .

Solution 3. We will let S be the amount of salt in the tank as a function of time
(in grams), and Q be the concentration of salt in the tank (in grams/liter), and V
be the volume of water in the tank (in liters), and t time (in hours). Since the rate
in of liquid is different from the rate out, we know that V is not constant. In fact V
satisfies the IVP

dV

dt
= 2− 3, V (0) = 10.
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Solving this, we find V (t) = 10 − t. Next, we set up a differential equation for the
amount of salt S in the tank as a function of time. We see that

dS

dt
=

rate in︷ ︸︸ ︷
2

ltr

hr
· 10

g

ltr
−

rate out︷ ︸︸ ︷
3

ltr

hr
· S
V

g

ltr
,

with the initial condition othat S(0) = 10. Therefore the initial value problem we
must solve is

dS

dt
= 20− 3

10− t
S, S(0) = 10.

This equation is not separable, but it is linear, so we can solve it with an integrating
factor. We calculate

µ(t) = e
∫

3
10−t

dt = e−3 ln(10−t) = (10− t)−3.

Multiplying the original differential equation by µ, we get the exact equation

(10− t)−3dS
dt

= 20(10− t)−3 − 3(10− t)−4S.

We then move the S-terms over to the left hand side, group, and integrate:

(10− t)−3S ′ + 3(10− t)−4S = 20(10− t)−3

((10− t)−3S)′ = 20(10− t)−3

(10− t)−3S = 10(10− t)−2 + C

S = 10(10− t) + C(10− t)3

Now the initial condition tells us C = −9/100, and therefore

S = 10(10− t)− 9

100
(10− t)3.

The concentration as a function of time is therefore Q = S/V , giving us

Q =
S

V
= 10− 9

100
(10− t)2.

The tank reaches a volume of 4 liters after exactly 6 hours. The concentration at
this time is then seen to be

Q(6) = 10− 9

100
(10− 6)2 =

214

25
≈ 8.56 g per liter.
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Problem 4 Monetary Investment

A young person with no initial capital invests k dollars per year at an annual rate
of return r. Assume that investments are made continuously and that the return is
compounded continuously.

(a) Determine the sum S(t) accumulated at any time t

(b) If r = 7.5% determine k so that 1 million will be available for retirement in 40
years

(c) If k = 2000 per year, determine the return rate r that must be obtained to have
1 million available in 40 years

. . . . . . . . .

Solution 4.

(a) Let t be time in years. Then S satisfies the differential equation

dS

dt
= rS + k,

which has the integrating factor µ(t) = e−rt. Using this to solve:

−re−rtS + ert
dS

dt
= ke−rt(

e−rtS
)′

= ke−rt∫ (
e−rtS

)′
dt =

∫
ke−rtdt

e−rtS = −k
r
e−rt + C

S = −k
r

+ Cert

Since there is no initial capital, S(0) = 0, and therefore C = k/r, making

S =
k

r

(
ert − 1

)
(b) Given that r = 0.075, we want S(40) = 106. Solving for k we obtain

106 =
k

0.075

(
e0.075∗40 − 1

)
106 = 254.474k

k = 3929.68 dollars per year
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(c) Given that k = 2000, we want S(40) = 106. Solving for r we obtain

106 =
2000

r

(
er∗40 − 1

)
r = 0.097734

So we’d need a rate of 9.7734%.

Problem 5 More Fluid Mixing

A 1500 gallon tank initially contains 600 gallons of water with 5 lbs of salt dissolved
in it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has
a salt concentration of 1

5
(1 + cos(t)) lbs/gal. If a well mixed solution leaves the tank

at a rate of 6 gal/hr, how much salt is in the tank when it overflows?

. . . . . . . . .

Solution 5. Notice first of all that more water enters the tank than leaves the tank.
In fact, the volume satisfies the differential equation

dV

dt
=

gal/hr in︷︸︸︷
9 −

gal/hr out︷︸︸︷
6 ,

and therefore dV
dt

= 3, so that V = 3t+ V0, where V0 is the initial volume (V0 = 600).
Thus

V = 3t+ 600.

The weight W of of salt in the tank (in pounds) satisfies the differential equation

dW

dt
= rate in − rate out,

where

rate in =

lbs salt/gallon in︷ ︸︸ ︷
1

5
(1 + cos(t))×

gal/hr in︷︸︸︷
9

and

rate out =

lbs salt/gallon out︷︸︸︷
W

V
×

gal/hr out︷︸︸︷
6 .

Thus
dW

dt
=

9

5
(1 + cos(t))− 2W

t+ 200
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This equation is linear! An integrating factor is µ(t) = (t+200)2. Using this to solve,
we get

2(t+ 200)W + (t+ 200)2
dW

dt
=

9

5
(1 + cos(t))(t+ 200)2

((t+ 200)2W )′ =
9

5
(1 + cos(t))(t+ 200)2∫

((t+ 200)2W )′dt =

∫
9

5
(1 + cos(t))(t+ 200)2dt

(t+ 200)2W =
9

5
(t+ 200)2 sin(t) +

18

5
(t+ 200) cos(t)

− 18

5
sin(t) +

9

5
(t+ 200)3 + C

so that

W =
9

5
sin(t) +

18

5

cos(t)

t+ 200
− 18

5

sin(t)

(t+ 200)2
+

9

5
(t+ 200) + C

Sinc initially there are 5 pounds of salt dissolved in the tank W (0) = 5, so that

5 =
18

5

1

200
+

9

5
(200) + C

and therefore C = −355.018, making

W =
9

5
sin(t) +

18

5

cos(t)

t+ 200
− 18

5

sin(t)

(t+ 200)2
+

9

5
(t+ 200)− 355.018

Now from our equation for V , we know that the tank overflows at t = 300. Evaluating
W (300), we obtain

W (300) = 543.182 lbs

Problem 6 Whale Fall

The expression “whale fall” refers to the body of a deceased whale which has fallen to
the ocean floor. Suppose that a whale dies of old age (after living a long and happy
life, so there’s nothing to blubber about). The whale immediately begins to sink, from
rest at its initial position on the surface. The whale has mass m and cross-sectional
area a.

(i) the density of ocean water is ρ = 1027 kg/m3

(ii) the gravitational acceleration is g = 9.81 m/s2

(iii) the force of drag satisfies the “drag equation” FD = 1
2
ρu2cda where here a is the

cross-sectional area and cd is the coefficient of drag

(iv) the whale’s body descends to the ocean floor, h meters down, unmolested by
other life

MATH 307 PS # 2



Problem 6 9

With this in mind, answer the following questions

(a) set up a first-order initial value problem describing the speed u of the carcass as
a function of time

(b) show that u(t) = K tanh(gt/K) is a solution to this initial value problem, where
here K =

√
2mg/(ρcdA) is called the terminal velocity, which is the maximum

speed of the falling body

(c) find an equation, in terms of K and h, for how long it takes the whale to reach
the ocean floor

(d) for a blue whale, we may approximate a = 28 meters, m = 122 tonnes, and
cd = 0.75. If the depth of the ocean is h = 2 km, how long will the descent take?

. . . . . . . . .

Solution 6.

(a) We ignore the force of buoyancy in this problem – as a result, our prediction of
the time it takes to descend will be smaller than the reality. Without buoyancy,
the forces acting on the whale include the force of gravity, and the drag force
caused by the water. Newton’s law says F = mu′(t), and therefore

mu′(t) = mg − 1

2
ρu2cda,

which we can simplify by dividing by m on both sides. Moreover the whale is
said to begin to sink, so u(0) = 0. Thus we have the initial value problem

u′ = g − 1

2m
ρu2cda.

(b) In terms of the constant K, the above initial value problem says

u′(t) = g − g

K2
u2, u(0) = 0.

For our value of u(t), we have u′(t) = gsech2(gt/K). Moreover, since 1 −
tanh2(y) = sech2(y) we see that

g − g

K2
u2 = g(1− tanh2(gt/K)) = gsech2(gt/K) = u′(t).

Thus u(t) satisfies the differential equation. Moreover, since tanh(0) = 0, we have
that u(0) = 0, and therefore u(t) satisfies the initial condition. Thus u(t) is a
solution to the initial value problem.
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(c) Since the whale is initially at the surface, the depth d(t) of the whale as a function
of time is given by

d(t) =

∫ t

0

u(t)dt =

∫ t

0

K tanh(gt/K) =
K2

g
ln(cosh(gt/K)).

The whale is at the bottom when d(t) = h, which gives

K2

g
ln(cosh(gt/K)) = h.

Solving for t, we obtain find that the time tF it takes to fall is

tF =
K

g
arccosh(egh/K

2

).

(d) For the numbers given above, K ≈ 1/3 and therefore tF ≈ 5994 seconds, which
is around an hour and fourty minutes.

Problem 7 Jean Wilder’s Famous Problem

A population of Oompa Loompas in a region will grow at a rate that is proportional
to their current population. In the absence of any outside factors the population
will triple in two weeks time. Also on any given day there is a net migration into
the area of 15 Oompa Loompas and 16 are eaten by Wangdoodles, Hornswogglers,
Snozzwangers and rotten, Vermicious Knids and 7 die of natural causes. If there are
initially 100 Oompa Loompas in the area, will the population survive? If not, when
do they die out?

. . . . . . . . .

Solution 7. Let nO be the number of Oompa Loopas in our region, and let t be time
in days. Then they satisfy the differential equation

dnO

dt
= increase− decrease

where

increase =

growth due to breeding︷︸︸︷
rnO +

growth from migration︷︸︸︷
15

and

decrease =

killed by terrifying monsters︷︸︸︷
16 +

die of natural causes︷︸︸︷
7 .

Here r is the growth rate. Thus

dnO

dt
= rnO − 8.
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An integrating factor for this solution is µ(t) = e−rt. Using this to solve, we get

−re−rtnO + e−rt
dnO

dt
= −8e−rt

(e−rtnO)′ = −8e−rt∫
(e−rtnO)′dt =

∫
−8e−rtdt

e−rtnO =
8

r
e−rt + C

nO =
8

r
+ Cert

Since nO(0) = 100, we know that C = 100− 8
r
, and therefore

nO =
8

r
+

(
100− 8

r

)
ert.

What is r, though? Outside external influences (such as birth, death, predator inter-
action, and migration), the population would satisfy the IVP

n′O = rn0, n0(0) = 100,

which has the solution nO = 100ert. From the question, we know that in this case
the population should triple in 14 days (2 weeks), so that nO(14) = 300. Thus
300 = 100e14r, making r = ln(3)/14. Thus the population actually satisfies

nO =
8

ln(3)/14
+

(
100− 8

ln(3)/14

)
ert.

or approximately

nO = 101.947− 1.947e
ln(3)
14

t.

This is decreasing, so the population dies out! Setting nO = 0 and solving for t, we
find that no more Oompa Loompas are left after about 50.442 days.

Problem 8 Bernoulli Equations

A Bernoulli equation is a nonlinear equation of the form

y′ + p(t)y = q(t)yn

If n 6= 0 and n 6= 1, then substituting u = y1−n and differentiating yeilds

u′ = (1− n)y−ny′.

This tells us that y′ = yn

(1−n)u
′. Putting this back into the original differential equation

then says
yn

1− n
u′ + p(t)y = q(t)yn.
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Dividing both sides by y, we then get

yn−1

1− n
u′ + p(t) = q(t)yn−1.

Now if we notice that yn−1 = 1/u, then this means

1/u

1− n
u′ + p(t) = q(t)(1/u),

which simplifies to
1

1− n
u′ + p(t)u = q(t),

which is a linear equation in u. We’ve just made a nonlinear equation into a linear
equation... a small miracle. We can then solve for u, and then use the fact that
u = y1/n to obtain y. Let’s call this method “Bernoulli’s method”.

(a) Use Bernoulli’s method to solve the differential equation

y′ = (Γ cos(t) + T )y − y3

where here Γ and T are constants. This equation comes up in the study of
stability in fluid flows.

. . . . . . . . .

Solution 8.

(a) We do the substitution u = y−2, so that

u′ = −2y−3y′

and

y′ = −1

2
y3u′

Substituting this into the original differential equation for y′, we get

−1

2
y3u′ = (Γ cos(t) + T )y − y3.

Dividing through by y3 on both sides, this becomes

−1

2
u′ = (Γ cos(t) + T )y−2 − 1.

Now remembering u = y−2:

−1

2
u′ = (Γ cos(t) + T )u− 1.
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which simplifies to
1

2
u′ + (Γ cos(t) + T )u = 1.

This equation is linear! An integrating factor for this equation is

µ(t) = exp (2Γ sin(t) + 2Tt) ,

and using this to solve the equation, we get

u =
1

exp (2Γ sin(t) + 2Tt)

∫
exp (2Γ sin(t) + 2Tt) dt

so that

y =

√
exp (2Γ sin(t) + 2Tt)∫
exp (2Γ sin(t) + 2Tt) dt

MATH 307 PS # 2


