
MATH 307: Problem Set #4

Due on: May 11, 2015

Problem 1 Wronskian

For each of the following collections of functions, show that the collection is linearly
independent.

(a) ex, xex

(b) ex cos(x), ex sin(x)

(c) e2x, e3x, e5x

(d) 1, x, x2

. . . . . . . . .

Solution 1.

(a) The Wronskian is e2x, which is nonzero. Therefore the functions are linearly
independent.

(b) The Wronskian is e2x, which is nonzero. Therefore the functions are linearly
independent.

(c) The Wronskian is 6e10x, which is nonzero. Therefore the functions are linearly
independent.

(d) The Wronskian is 2, which is nonzero. Therefore the functions are linearly inde-
pendent.
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Problem 2 Homogeneous ODEs with Const. Coeffs: Distinct Roots

In each of the following, find the general solution of the given differential equation

(a) y′′ + 3y′ + 2y = 0

(b) 2y′′ − 3y′ + y = 0

(c) y′′ − 2y′ − 2y = 0

. . . . . . . . .

Solution 2.

(a) The characteristic equation is r2 + 3r+ 2, which has roots r1 = −1 and r2 = −2.
Hence the general solution is

y = C1e
−t + C2e

−2t.

(b) The characteristic equation is 2r2 − 3r+ 1, which has roots r1 = 1/2 and r2 = 1.
Hence the general solution is

y = C1e
t/2 + C2e

t.

(c) The characteristic equation is r2 − 2r − 2, which has roots r1 = 1 +
√

3 and
r2 = 1−

√
3. Hence the general solution is

y = C1e
(1+
√
3)t + C2e

(1−
√
3)t.

Problem 3 Homogeneous IVPs with Const. Coeffs: Distinct Roots

In each of the following, find the solution of the IVP

(a) y′′ + 4y′ + 3y = 0, y(0) = 2, y′(0) = −1

(b) y′′ + 3y′ = 0, y(0) = −2, y′(0) = 3

. . . . . . . . .

Solution 3. (a) The characteristic equation is r2+4r+3 = 0 which has roots r1 = −1
and r2 = −3. Hence the general solution is

y = C1e
−t + C2e

−3t.

We calculate then that
y′ = −C1e

−t − 3C2e
−3t.

MATH 307 PS # 4



Problem 4 3

This means that y(0) = C1 + C2 and y′(0) = −C1 − 3C2. Therefore our initial
condition tells us

C1 + C2 = 2

−C1 − 3C2 = −1,

and solving this, we find C1 = 5/2 and C2 = −1/2. Therefore the solution is

y =
5

2
e−t − 1

2
e−3t.

(b) The characteristic equation is r2 + 3r = 0 which has roots r1 = 0 and r2 = −3.
Hence the general solution is

y = C1 + C2e
−3t.

We calculate then that
y′ = −3C2e

−3t.

This means that y(0) = C1+C2 and y′(0) = −3C2. Therefore our initial condition
tells us

C1 + C2 = −2

−3C2 = 3,

and solving this, we find C1 = −1 and C2 = −1. Therefore the solution is

y = −1− e−3t.

Problem 4 Complex Number Problems

In each of the following, rewrite the expression in the form a+ ib

(a) e2−3i

(b) e2−(π/2)i

(c) π−1+2i

. . . . . . . . .

Solution 4.

(a)

e2−3i = e2e−3i = e2(cos(−3) + i sin(−3))

= e2(cos(3)− i sin(3)) = e2 cos(3)− ie2 sin(3)
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(b)

e2−(π/2)i = e2e−(π/2)i = e2(cos(−π/2) + i sin(−π/2))

= e2(0− i) = −ie2

(c)

π−1+2i = (π)−1+2i = (eln(π))−1+2i = eln(π)(−1+2i)

= e− ln(π)+2 ln(π)i = e− ln(π)e2 ln(π)i

= e− ln(π)(cos(2 ln(π)) + i sin(2 ln(π)))

= e− ln(π) cos(2 ln(π)) + ie− ln(π) sin(2 ln(π))

=
1

π
cos(2 ln(π)) + i

1

π
sin(2 ln(π))

Problem 5 Homogeneous ODEs with Const. Coeffs: Complex Roots

In each of the following, find the general solution of the ODE

(a) y′′ − 2y′ + 6y = 0

(b) y′′ + 2y′ + 2y = 0

(c) y′′ + 4y′ + 6.25y = 0

. . . . . . . . .

Solution 5.

(a) The corresponding characteristic equation is r2 − 2r + 6 = 0, which has roots
1±
√

5i. Hence the general solutions is

y = C1e
t cos(

√
5t) + C2e

t sin(
√

5t).

(b) The corresponding characteristic equation is r2 + 2r + 2 = 0, which has roots
r1 = −1± i. Hence the general solutions is

y = C1e
−t cos(t) + C2e

−t sin(t).

(c) The corresponding characteristic equation is r2 + 4r + 6.25 = 0, which has roots
r1 = −2± 3

2
i. Hence the general solutions is

y = C1e
−2t cos(3t/2) + C2e

−2t sin(3t/2).
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Problem 6 Homogeneous IVPs with Const. Coeffs: Complex Roots

In each of the following, find the solution of the IVP

(a) y′′ + 4y = 0, y(0) = 0, y′(0) = 1

(b) y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 0

. . . . . . . . .

Solution 6.

(a) The corresponding characteristic equation is r2 + 4 = 0, which has roots ±2i.
Hence the general solution is

y = C1 cos(2t) + C2 sin(2t).

Therefore
y′ = −2C1 sin(2t) + 2C2 cos(2t),

and it follows that y(0) = C1 and y′(0) = 2C2. Then our initial condition tells us

C1 = 0

2C2 = 1

and therefore C1 = 0 and C2 = 1/2, so that the solution to the initial value
problem is

y =
1

2
sin(2t).

(b) The corresponding characteristic equation is r2 + 4r + 5 = 0, which has roots
−2± i. Hence the general solution is

y = C1e
−2t cos(t) + C2e

−2t sin(t).

Therefore

y′ = −2C1e
−2t cos(t)− C1e

−2t sin(t)− 2C2e
−2t sin(t) + C2e

2t cos(t),

and it follows that y(0) = C1 and y′(0) = −2C1 + C2. Then our initial condition
tells us

C1 = 1

−2C1 + C2 = 0

and therefore C1 = 1 and C2 = 2, so that the solution to the initial value problem
is

y = e−2t cos(t) + 2e−2t sin(t).
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Problem 7 Homogeneous ODEs with Const. Coeffs: Repeated Roots

In each of the following, find the general solution of the ODE

(a) 9y′′ + 6y′ + y = 0

(b) 4y′′ + 12y′ + 9y = 0

(c) y′′ − 6y′ + 9y = 0

(d) 25y′′ − 20y′ + 4y = 0

. . . . . . . . .

Solution 7.

(a) The roots of the characteristic equation are r1 = r2 = −1/3, and therefore the
general solution is

y = C1e
−t/3 + C2te

−t/3.

(b) The roots of the characteristic equation are r1 = r2 = −3/2, and therefore the
general solution is

y = C1e
−3t/2 + C2te

−3t/2.

(c) The roots of the characteristic equation are r1 = r2 = 3, and therefore the general
solution is

y = C1e
3t + C2te

3t.

(d) The roots of the characteristic equation are r1 = r2 = 2/5, and therefore the
general solution is

y = C1e
2t/5 + C2te

2t/5.

Problem 8 Reduction of Order

In each of the following, use the method of reduction of order to find a second solution
of the ODE

(a) t2y′′ + 2ty′ − 2y = 0, t > 0 (one solution is y(t) = t)

(b) (x− 1)y′′ − xy′ + y = 0, x > 1 (one solution is y(x) = ex)

. . . . . . . . .

Solution 8.
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(a) We try a solution of the form y = v(t)t. Then y′ = v′(t)t + v(t) and y′′(t) =
v′′(t)t+ 2v′(t), so that

t2y′′ + 2ty′ − 2y = t2(v′′(t)t+ 2v′(t)) + 2t(v′(t)t+ v(t))− 2(v(t)t)

= t3v′′(t) + 4t2v′(t).

Then since t2y′′ + 2ty′ − 2y = 0 (in order to be a solution to the equation), we
must have

t3v′′(t) + 4t2v′(t) = 0.

Dividing both sides by t2, this simplifies to

tv′′(t) + 4v′(t) = 0.

Now if we substitute w = v′, then this equation becomes

tw′(t) + 4w(t) = 0.

This equation is separable, and the solution is w(t) = C1t
−4, where C1 is an

arbitrary constant. Then since v′(t) = w, it follows that v(t) = C1t
−3 + C2

(where we’ve left −C1/3 as C1 since it’s an arbitrary constant anyway). Hence
another solution is

y = v(t)t = C1t
−2 + C2t,

and in fact this is the general solution.

(b) We try a solution of the form y = v(x)ex. Then y′ = v′(x)ex + v(x)ex and
y′′ = v′′(x)ex + 2v′(x)ex + v(x)ex, so that

(x− 1)y′′ − xy′ + y

= (x− 1)(v′′(x)ex + 2v′(x)ex + v(x)ex)− x(v′(x)ex + v(x)ex) + (v(x)ex)

= (x− 1)exv′′(x) + (x− 2)exv′(x).

Then since (x− 1)y′′−xy′+ y = 0 (in order to be a solution to the equation), we
must have

(x− 1)exv′′(x) + (x− 2)exv′(x) = 0.

Dividing both sides by ex, this simplifies to

(x− 1)v′′(x) + (x− 2)v′(x) = 0.

Now if we substitute w = v′, the equation becomes

(x− 1)w′(x) + (x− 2)w(x) = 0,

which is separable. The solution is

w = C1(x− 1)e−x.

Then since v′ = w, it follows that

v = −C1xe
−x + C2.

Hence another solution to the original differential equation is

y = vex = −C1x+ C2e
x,

and in fact this is the general solution.
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Problem 9 Euler-Cauchy Equation

A second-order Euler-Cauchy equation is a second-order homogeneous linear ordinary
differential equation with non-constant coefficients of the form

at2
d2y

dt2
+ bt

dy

dt
+ cy = 0, (1)

where a, b, c are constants with a 6= 0. Due to it’s regular form, the Euler-Cauchy
equation may be transformed into a homogeneous linear ordinary differential equation
with constant coefficients, by means of an appropriate variable substitution.

Consider the variable substitution t = eu

(a) Show that
dy

du
= t

dy

dt

(b) Show that
d2y

du2
= t2

d2y

dt2
+ t

dy

dt

(c) Using (a) and (b), show that the Euler-Cauchy Equation (1) is equivalent to the
second-order linear ordinary differential equation with constant coefficients

a
d2y

du2
+ (b− a)

dy

du
+ cy = 0.

. . . . . . . . .

Solution 9.

(a) The chain rule tells us that

dy

du
=
dy

dt

dt

du
=
dy

dt
eu =

dy

dt
t.

(b) The previous calculation actually shows that for any function f , we have d
du

(f) =
t d
dt

(f). Then since
d2y

du2
=

d

du

(
d

du
y

)
we can replace any occurence of d

du
with t d

dt
. Doing so, we obtain

d2y

du2
= t

d

dt

(
t
d

dt
y

)
.

Now to simplify this, we need to use the product rule. We find

t
d

dt

(
t
d

dt
y

)
= t2

d2

dt2
y + t

d

dt
y = t2

d2y

dt2
+ t

dy

dt
.

Therefore
d2y

du2
= t2

d2y

dt2
+ t

dy

dt
.
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(c) Using (b), we can replace t2 d
2y
dt2

with d2y
du2
−t dy

du
in Equation (1). Doing so, Equation

(1) becomes

a

(
d2y

du2
− tdy

du

)
+ bt

dy

dt
+ cy = 0

This simplifies to

a
d2y

du2
+ (b− a)t

dy

dt
+ cy = 0.

Now using (a), we can replace tdy
dt

with dy
du

, obtaining

a
d2y

du2
+ (b− a)

dy

du
+ cy = 0.

Problem 10 Euler-Cauchy Equation Practice

Find the general solution to each of the following equations

(a) t2y′′ + 4ty′ + 2y = 0, t > 0

(b) 3t2y′′ + 7ty′ − 4y = 0, t > 0

. . . . . . . . .

Solution 10.

(a) Using the previous problem, substituting t = eu the equation becomes

y′′(u) + 3y′(u) + 2y(u) = 0.

The general solution of this equation is

y(u) = Ae2u +Beu.

Substituting back in u = ln(t), we see

y(t) = At2 +Bt.

(b) Using the previous problem, substituting t = eu the equation becomes

3y′′(u) + 4y′(u)− 4y(u) = 0.

The general solution of this equation is

y = Ae−2x +Be2x/3.

Substituting back in u = ln(t), we see

y(t) = At−2 +Bt2/3.
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Problem 11 Higher-Order ODE’s

In this class, we will mostly stick with first and second-order equations. However, it
is important to recognizer that many of the methods we outline for first and second
order equations naturally generalize to the case of higher-order equations. For each of
the following equations, do your best to extend a method we have learned previously,
in order to find the general solution.

(a) y′′′′ + y = 0

(b) y′′′ − 3y′′ − 3y′ + y = 0

(c) y′′′ − y′′ − y′ + y = 0

(d) t3y′′′ + 3t2y′′ + ty′ + y = 0

. . . . . . . . .

Solution 11.

The characteristic polynomial is r2 + 1, which has roots −
√

2/2± i
√

2/2 and
√

22±
i
√

2/2. The general solution is then

y = Ae−
√
2t/2 cos(

√
2t/2)+Be−

√
2t/2 sin(

√
2t/2)+Ce

√
2t/2 cos(

√
2t/2)+De

√
2t/2 sin(

√
2t/2)

The characteristic polynomial is r3 − 3r2 − 3r + 1, which has roots −1 and 2 ±
√

3.
The general solution is therefore

y = Ae−t +Be(2+
√
3)t + Ce(2−

√
3)t.

The characteristic polynomial is r3 − r2 − r+ 1, which as roots 1, 1,−1. The general
solution is therefore

y = (At+B)et + Ce−t.

The equation is an Euler-Cauchy equation! We do the substitution t = eu, noting
that

t3
d3y

dt3
=
d3y

du3
− 3

d3y

du3
+ 2

dy

du
,

and remembering that

t2
d2y

dt3
=
d2y

du2
− dy

du

t
dy

dt
=
dy

du
.

Therefore the Euler-Cauchy equation becomes

y′′′(u) + y(u) = 0.

The characteristic polynomial of this equation is r3 + 1, and the general solution is
therefore

y(u) = Ae−u +Beu/2 cos(
√

3u/2) + Ceu/2 sin(
√

3u/2).

Substituting back in for u, we then obtain

y(t) = At−1 +B
√
t cos(

√
3 ln(t)/2) + C

√
t sin(

√
3 ln(t)/2).
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