MATH 307: Problem Set #5

Due on: Feb 19, 2016

Problem 1 Method of Undetermined Coefficients: General Solutions

In each of the following, find the general solution of the given differential equation

(a)
$$y'' - 2y' - 3y = 3e^{2t}$$

(b)
$$y'' - 2y' - 3y = -3te^{-t}$$

(c)
$$y'' - 2y' - 3y = te^{-t} + 7e^{2t}$$

(d)
$$y'' - 2y' - 3y = 2te^{-t} - 3e^{2t}$$

(e)
$$y'' - 2y' - 3y = 4te^{-t} + e^{2t}$$

(f)
$$y'' + 2y' + 5y = \sin(2t)$$

(g)
$$y'' + 2y' + 5y = \cos(2t)$$

(h)
$$y'' + 2y' + 5y = 4\sin(2t) + 7\cos(2t)$$

(i)
$$y'' + 2y' = 3 + 4\sin(2t)$$

(j)
$$y'' + 2y' + y = 2e^{-t}$$

$$(k) y'' + y = 3\sin(2t)$$

$$(1) y'' + y = t\cos(2t)$$

(m)
$$y'' + y = 3\sin(2t) + t\cos(2t)$$

(n)
$$y'' - y' - 2y = e^t$$

(o)
$$y'' - y' - 2y = e^{-t}$$

(p)
$$y'' - y' - 2y = \cosh(t)$$
 [Hint: $\cosh(t) = (e^t + e^{-t})/2$]

.

Problem 2

Problem 2 Method of Undetermined Coefficients: Initial Value Problems

In each of the following, find the solution of the given initial value problem

(a)
$$y'' + 4y = t^2 + 3e^t$$
, $y(0) = 0$, $y'(0) = 2$

(b)
$$y'' - 2y' - 3y = 3te^{2t}$$
, $y(0) = 1$, $y'(0) = 0$

(c)
$$y'' + 2y' + 5y = 4e^{-t}\cos(2t)$$
, $y(0) = 1$, $y'(0) = 0$

.

MATH 307 PS # 5