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1 Complex Numbers

Definition 1. A complex number is a number that may be expressed in the form

a+ bi

for some real numbers a and b. The value a is called the real part of the complex number
a+ ib, and the value b is called the imaginary part.

Here i is a special number satisfying i2 = −1. In other words, i is a square root of −1.
Note that the real and imaginary parts of a complex number are both real. We use Re(z)
and Im(z) to denote the real and imaginary parts of a complex number z. In particular:

Re(a+ ib) = a, Im(a+ ib) = b.

Exercise 1. Determine the real and imaginary components of the followng numbers

(a) 13

(b) −7i

(c) 3− 2i

(d) −4 + 7i

The set of complex numbers forms a field. We can add, subtract, multiply, and divide
(assuming nonzero denominator) complex numbers, and each of these operations behaves
very much in the same way as over the real numbers (commutative, associative, distributive,
etc).

Addition/Subtraction:
To add two complex numbers a + ib and c + id, one simply adds the real and imaginary
components:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d).

Subtraction is similar:

(a+ ib)− (c+ id) = (a− c) + i(b− d).
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Multiplication:
To multiply two complex numbers a+ ib and c+ id, one simply “foils it out”:

(a+ ib)(c+ id) = ac+ ibc+ iad+ i2bd = ac− bd+ i(ad+ bc).

Division of Complex Numbers:
The operation of division for complex numbers is much more interesting. Given complex
numbers a+ ib and c+ id, with the latter nonzero, we can calculate (a+ ib)/(c+ id) via the
following complex conjugation trick:

a+ ib

c+ id
=
a+ ib

c+ id
1 =

a+ ib

c+ id

c− id
c− id

=
ac+ bd+ i(bc− ad)

c2 + d2
=

(
ac+ bd

c2 + d2

)
+ i

(
bc− ad
c2 + d2

)
.

The above trick amounts to multiplying and dividing by the complex conjugate of the de-
nominator.

Definition 2. Let z = a+ ib, be a complex number. The complex conjugate of z is denoted
z and given by

z = a− ib.

In other words the complex conjugate of a complex number is the unique complex number
with the equal real part and negative imaginary part. Note that

zz = (a+ ib)(a− ib) = a2 − iab+ iab− i2b2 = a2 − i2b2 = a2 + b2.

In particular a complex number times its complex conjugate is purely real!

Definition 3. Let z = a+ ib be a complex number. The the norm (or modulus) of z is

|z| =
√
zz =

√
a2 + b2.

Exercise 2. Write each of the following expressions as a complex number in the form a+ ib
for a and b real.

(a) (3 + 7i) + (4− 2i)

(b) (2 + 3i)− (1 + 3i)

(c) (3 + 6i)(1− 4i)

(d) (1 + 2i)/(1 + 7i)

Thinking geometrically, we can view a complex number a + ib as the vector 〈a, b〉 in
the x, y-plane. Recall that for vectors in the plane, we have an alternative description in
terms of the magnitude of the vector, and the angle from the positive x-axis. Note that the
magnitude of the vector 〈a, b〉 is exactly the magnitude of the complex number a+ ib.

Definition 4. Consider a complex number z = a + ib, and let θ be the angle from the
positive x-axis to the vector 〈a, b〉 in the x, y-plane. Then θ is called the argument of z, and
is denoted by Arg(z).

2



Since the vector 〈a, b〉 is precisely determined by it’s magnitude and angle, each complex
number is uniquely determined by its magnitude and argument.

Exercise 3. Find the magnitude and argument of each of the following complex numbers

(a) 1 + i

(b) 1− i

(c) 3 + 4i

2 Euler’s Definition

Integral to our understanding of the complex numbers is the following definition of Euler

Definition 5 (Euler). For any real number θ, we define the complex number eiθ by

eiθ = cos(θ) + i sin(θ).

Then the big theorem of Euler is the following

Theorem 1. This definition does not break anything.

In other words, the definition agrees with the usual algebraic identities of exponential
funtions, ie.

eiθeiφ = ei(θ+φ).

As well as the usual power series representation for the exponential function

eiθ =
∞∑
n=0

(iθ)n

n!
.

As a matter of fact, any complex number z = a+ib, if r =
√
a2 + b2 = |z| and θ = Arg(z),

then z = reiθ. Thus for any complex number, we can go back and forth between the cartesian
a+ ib form and the exponential reiθ form.

Exercise 4. Write each of the following complex numbers in the form reiθ for some real
numbers r and θ with r ≥ 0.

(a) i

(b) 2 + 2i

(c) 3 + 4i

Exercise 5. Write each of the following complex numbers in the form a + ib for some real
values a and b.

1. eiπ

2. 2eiπ/6

3. −1ei5π/4

4. eln(2)+iπ
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3 Applications

Proposition 1. Let θ and φ be two real numbers. Then

sin(θ + φ) = sin(θ) cos(φ) + cos(θ) sin(φ),

cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ).

Proof. From Euler’s definition,

sin(θ + φ) = Im(ei(θ+φ)),

and also
cos(θ + φ) = Re(ei(θ+φ)).

Now again from Euler, we calculate:

ei(θ+φ) = eiθ+iφ = eiθeiφ

= (cos(θ) + i sin(θ))(cos(φ) + i sin(φ))

= cos(θ) cos(φ)− sin(θ) sin(φ) + i(sin(θ) cos(φ) + cos(θ) sin(φ)).

From this, it follows that

Im(ei(θ+φ)) = sin(θ) cos(φ) + cos(θ) sin(φ)

and also that
Re(ei(θ+φ)) = cos(θ) cos(φ)− sin(θ) sin(φ).

This completes the proof.

Proposition 2. Let a and b be real numbers. Then∫
eat sin(bt)dt =

−b
a2 + b2

eat cos(bt) +
a

a2 + b2
eat sin(bt) + C∫

eat cos(bt)dt =
a

a2 + b2
eat cos(bt) +

b

a2 + b2
eat sin(bt) + C

Proof. Note that by Euler,

e(a+ib)t = eat+ibt = eateibt

= eat(cos(bt) + i sin(bt))

= eat cos(bt) + ieat sin(bt).

It follows that
Im(e(a+ib)t) = eat sin(bt),

and also that
Re(e(a+ib)t) = eat cos(bt).

4



Now taking real or imaginary parts commutes with integration, and therefore∫
eat sin(bt)dt =

∫
Im(e(a+ib)t)dt

= Im(

∫
e(a+ib)tdt)

= Im(
1

(a+ ib)
e(a+ib)t)

Where for simplicity we have left off the usual arbitrary constant of integration. Now using
our complex conjugation trick and Euler’s definition:

1

(a+ ib)
e(a+ib)t

=
1

(a+ ib)

a− ib
a− ib

e(a+ib)t

=

(
a

a2 + b2
− ib

a2 + b2

)(
eat cos(bt) + ieat sin(bt)

)
=

(
a

a2 + b2
eat cos(bt) +

b

a2 + b2
eat sin(bt)

)
+ i

(
−b

a2 + b2
eat cos(bt) +

a

a2 + b2
eat sin(bt)

)
Thus∫

eat sin(bt)dt = Im

(
1

(a+ ib)
e(a+ib)t

)
=

(
−b

a2 + b2
eat cos(bt) +

a

a2 + b2
eat sin(bt)

)
.

and similarly∫
eat cos(bt)dt = Re

(
1

(a+ ib)
e(a+ib)t

)
=

(
a

a2 + b2
eat cos(bt) +

b

a2 + b2
eat sin(bt)

)
.

Exercise 6. Use Euler to prove the trigonometric identity

cos(α + β) + cos(α− β) = 2 cos(α) cos(β).

Exercise 7. The hyperbolic trigonometric functions sinh(x) and cos(x) are defined by

sinh(x) =
1

2
ex − 1

2
e−x,

and

cosh(x) =
1

2
ex +

1

2
e−x.
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(a) Use Euler to show that

sinh(x) = −i sin(ix), cosh(x) = cos(ix)

This explains their designation as “trigonometric functions”.

(b) Using (a), prove that

d

dx
sinh(x) = cosh(x),

d

dx
cosh(x) = sinh(x)

One can obviously also prove this directly from the definitions, but it’s even easier this
way!

Exercise 8. Use Euler’s definition to calculate the integral∫
xe3x cos(2x)dx.
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