
Euler’s Method with Python

Intro. to Differential Equations

February 1, 2016

1 Euler’s Method with Python

1.1 Euler’s Method

We first recall Euler’s method for numerically approximating the solution of a first-order
initial value problem

y′ = f(x, y), y(x0) = y0

as a table of values. To start, we must decide the interval [x0, xf] that we want to find a
solution on, as well as the number of points n that we wish to approximate in that interval.
Then taking ∆x = (xf − x0)/(n − 1) we have n evenly spaced points x0, x1, . . . , xn, with
xj = x0 + j · ∆x. Then our objective is then to fill in the values of y(xi) in the table below.

x y
x0 y0
x1 y(x1)
x2 y(x2)
...

...
xn y(xn)

Of course since we don’t “know” the exact value of y(x), we’ll only be able to fill in the table
with approximate values of y at each x-point.

The strategy of Euler’s method is as follows. Since we know that y(x0) = y0, the differ-
ential equation also tells us y′(x0) = f(x0, y0). Therefore using a tangent line approximation
of the unknown function, we have that

y(x) ≈ y′(x0)(x− x0) + y(x0) = (x− x0)f(x0, y0) + y0, for x close to x0.

Using this tangent line approximation, we approximate that

y(x1) ≈ (x1 − x0)f(x0, y0) + y0 = ∆xf(x0, y0) + y0.

Therefore y(x1) is approximately equal to y1 := ∆xf(x0, y0) + y0. Now since y(x1) ≈ y1, the
differential equation also tells us y′(x1) = f(x1, y(x1)) ≈ f(x1, y1). Thus again we have a
tangent line approximation

y(x) ≈ y′(x1)(x− x1) + y(x1) ≈ (x− x1)f(x1, y1) + y1, for x close to x1.

1

Using this tangent line approximation, we approximate that

y(x2) ≈ (x2 − x1)f(x1, y1) + y1 = ∆xf(x1, y1) + y1.

Therefore y(x2) is approximately equal to y2 := ∆xf(x1, y1) + y1. Continuing in this way,
we obtain approximations y(xj) ≈ yj, where the yj are defined recursively by the equation

yj+1 := ∆xf(xj, yj) + yj.

The table of values

x y
x0 y0
x1 y1
...

...
xn yn

defined in this way then gives us our approximation to the solution of the differential equa-
tion. This is the (forward) Euler’s method.

1.2 Implementing Euler’s Method with Python

The accuracy of Euler’s method depends highly on the number of points that you choose in
the interval [x0, xf], as well as the size of the interval [x0, xf]. If you want to approximate the
solution for a longer time, then you need to increase the number of points you approximate,
in order to keep your approximate solution accurate. Doing so many calculations by hand
would be quite a burdensome task, so we instead look to a computer for some assistance.
In this section, we will demonstrate how to implement Euler’s method using python. We
assume that users have a computer with a web browser – it is not necessary to have python
installed on your system!

The first thing we want to do is go to

https : // c loud . sagemath . com/

and create an account. Then create a new project – call it whatever you want, such as
“Euler’s Method”. Click on the created project and create a new Sage worksheet by selecting
the appropriate item out of the drop-down menu. You should now be presented with a page
which looks like this one.

2

Now in the big blank part of the page, we’re going to enter our first bit of code. The
code is

Listing 1: Importing External Libraries

import numpy as np
from matp lo t l i b import pyplot as p l t

This bit of code includes some fancy packages and things that other people have written for
us. In particular, numpy is a huge library of routines for numerical calculation in python,
and matplotlib has plotting packages for making pretty graphs. Under this bit of code, we
will find our numerical approximation to an initial value problem. For the purposes of this
demonstration, let’s suppose that our initial value problem is

y′ = −y + sin(x), y(0) = 1.

Let’s use Euler’s method to approximate the value of the function in the interval [0, 10] with
101 points. Then x0 = 0, y0 = 1, xf = 10, n = 101, and ∆x = (xf − x0)/(n− 1) = 0.1. The
following code tells the computer this information.

Listing 2: Defining Basic Data

x0 = 0
y0 = 1
xf = 10
n = 101
de l tax = (xf−x0)/ (n−1)

We next want to create a vector of length 101 whose entries are our x-values. To do this, we
enter the following code

Listing 3: Defining x-values

x = np . l i n s p a c e (x0 , xf , n)

Now the computer has a vector called x, given by x = [0.0, 0.1, 0.2, . . . , 10.0]. The next thing
we want to do is tell the computer how to generate the y-values. The first thing we do is
create an array to store the y-values in.

Listing 4: Initializing Array for y-values

y = np . z e r o s ([n])

This creates an array y with n entries that are all 0.0. The next thing we want to do is fix
this so that the entries are the estimates given by the (forward) Euler method. To do this,
we use a for loop, which is a way of telling the computer to repeat an instruction a certain
number of times:

Listing 5: For Loop for Euler’s Method

y [0] = y0
f o r i in range (1 , n) :

y [i] = de l tax∗(−y [i −1] + np . s i n (x [i])) + y [i −1]

3

The first line sets the first entry of the array y to the value y0. The loop then sets the i’th
entry of the array to the (i− 1)’th entry plus ∆x times our estimate of the derivative from
the differential equation. The array y now has the estimates of the solution from Euler’s
method.

We can also use a for loop to print out the data that we’ve generated in a pretty way

Listing 6: Printing the Data

f o r i in range (n) :
p r i n t (x [i] , y [i])

Finally, to make a pretty graph of our data, we can use the plot function from matplotlib.

Listing 7: Plotting the Solution

p l t . p l o t (x , y , ’ o ’)
p l t . x l a b e l (” Value o f x ”)
p l t . y l a b e l (” Value o f y ”)
p l t . t i t l e (” Approximate So lu t i on with Forward Euler ’ s Method”)
p l t . show ()

In summary, our code is:

Listing 8: Summary of Code

import numpy as np
from matp lo t l i b import pyplot as p l t

x0 = 0
y0 = 1
xf = 10
n = 101
de l tax = (xf−x0)/ (n−1)

x = np . l i n s p a c e (x0 , xf , n)

y = np . z e r o s ([n])
y [0] = y0
f o r i in range (1 , n) :

y [i] = de l tax∗(−y [i −1] + np . s i n (x [i])) + y [i −1]

f o r i in range (n) :
p r i n t (x [i] , y [i])

p l t . p l o t (x , y , ’ o ’)
p l t . x l a b e l (” Value o f x ”)
p l t . y l a b e l (” Value o f y ”)
p l t . t i t l e (” Approximate So lu t i on with Forward Euler ’ s Method”)
p l t . show ()

4

To run the code, we hit the green arrow that says “Run” at the top of the screen.

The result should be a bunch of data which is spit out plus a pretty graph a the end

5

