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1 Introduction

The final exam is almost upon us. Jeepers! In preparing for the final exam,
there are several things to keep in mind

• the final is cumulative

• definitions will make up a significant portion of the final

Aside from knowing the exact statements of definitions, you should also know
the major results/theorems/techniques. Even further, you should be able to
apply the major theorems to solve problems. This document is intended
to give you a sampling of problems similar to those you should expect to
run into on the final exam, aside from the questions asking that you state
definitions. However, this sampling of problems should not be considered
to be “exhaustive”, and the actual final exam may contain some completely
different questions or question types. Therefore it is also encouraged that
you seek additional questions elsewhere, both in the book and online. In
particular, a search on the internet may lead you to several examples of past
Math 308 exams. Here, the problems are broken down into three types:
calculation based questions, true/false questions, conceptual questions.

2 Calculation-Type Questions

Question 1. Suppose that A is the 3× 4 matrix

A =

 −1 4 −3 4
0 2 1 −3
0 0 0 1


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and that

~b =

 0
3
0


(a) Find a basis for N (A)

(b) Check that

~y =


1
1
1
0


is a solution to the equation A~x = ~b

(c) Using (a) and (b), determine all solutions to the equation A~x = ~b

Solution 1.

(a) We first determine the RREF of A, which turns out to be 1 0 5 0
0 1 1/2 0
0 0 0 1


This tells us we have one free variable, namely x3, and the null space
N (A) is

N (A) =



−5x3
−(1/2)x3

x3
0

 : x3 a real number

 = span




−5
−1/2

1
0



 .

Thus a basis for N (A) consists of the single vector


−5
−1/2

1
0

.

(b) Matrix multiplication of A with ~y shows that A~y = ~b
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(c) Using (a) and (b), any solution to A~x = ~b must be of the form

~x =


1
1
1
0

+ c


−5
−1/2

1
0


for some constant c.

Question 2. Let A be the matrix

A =

 1 1 1 2
−1 0 2 −3
2 4 8 5


(a) Determine a basis for R(A) consisting of column vectors of A

(b) Use Gram-Schmidt to turn the basis for R(A) found in (a) into an or-
thonormal basis

Solution 2.

(a) Let ~A1, ~A2, ~A3, ~A4 be the column vectors of A. We know that

R(A) = span{ ~A1, ~A2, ~A3, ~A4},

and therefore by removing some of the column vectors, we should get a
basis for R(A). We first calculate the RREF of A, which turns out to be 1 0 −2 0

0 1 3 0
0 0 0 1


This shows us that the null space of A is

N (A) =




2x3
−3x3
x3
0

 : x3 a real number

 = span




2
−3
1
0


 .

In particular, this means that the nullity of A is 1, so that the rank of
A is 4 − 1 = 3 by the rank-nullity theorem. Therefore a basis for R(A)
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will have precisely three vectors. Thus to get a basis for R(A), we need

to remove exactly 1 column vector from the set { ~A1, ~A2, ~A3, ~A4}. Since

[2,−3, 1, 0]T is in the kernel of A, we know that 2 ~A1 − 3 ~A2 + ~A3 = ~0.

This means that ~A3 is in the span of { ~A1, ~A2}. Hence we can remove it

to get a basis { ~A1, ~A2, ~A4} for R(A).

(b) We start with ~A1, which we normalize to get the vector

~u1 = (1/‖ ~A1‖) ~A1 =

 0.40825
−0.40825
0.81650

 .
We next form the vector

~v2 = ~A2 − ( ~A2 · ~u1)~u1 =

 −1/2
3/2
1


and normalize it to get

~u2 = (1/‖~v2‖)~v2 =

 −0.26726
0.80178
0.53452


Lastly we form the vector

~v3 = ~A4 − ( ~A4 · ~u1)~u1 − ( ~A4 · ~u2)~u2 =

 −0.57143
−0.28571
0.14286


and normalize to get

~u3 = (1/‖~v3‖)~v3 =

 −0.87287
−0.43644
0.21822


Then {~u1, ~u2, ~u3} is an orthonormal basis for R(A).

Question 3. Determine the inverse of the matrix

A =

 1 0 0
2 1 0
3 4 1

 .
4



Solution 3. We determine the inverse by row reducing the augmented matrix

[A|I] =

 1 0 0 1 0 0
2 1 0 0 1 0
3 4 1 0 0 1

 .
Doing so, we obtain  1 0 0 1 0 0

0 1 0 −2 1 0
0 0 1 5 −4 1

 .
Therefore, the inverse of A is

A−1 =

 1 0 0
−2 1 0
5 −4 1

 .
Question 4. Calculate the determinant of the matrix

A =


1 −2 2 1
1 −1 5 0
2 −2 11 2
0 2 8 1

 .
Solution 4. We can calculate the determinant of A straight-forwardly, using
the definition of the determinant. However, that sounds like a pain. Instead,
we’ll first simplify the problem by using a sequence of elementary row opera-
tions. The strategy is simple: the determinant of an upper triangular matrix
is exactly the product of the elements on the main diagonal; if we use elemen-
tary row operations to transform A to an upper triangular matrix, and keep
track of the operations we do, then we can easily calculate the determinant!
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We proceed as follows:

R2 −R1 −→


1 −2 2 1
0 1 3 −1
2 −2 11 2
0 2 8 1



R3 − 2R1 −→


1 −2 2 1
0 1 3 −1
0 2 7 0
0 2 8 1



R1 + 2R2 −→


1 0 8 −1
0 1 3 −1
0 2 7 0
0 2 8 1



R3 − 2R2 −→


1 0 8 −1
0 1 3 −1
0 0 1 2
0 2 8 1



R4 − 2R2 −→


1 0 8 −1
0 1 3 −1
0 0 1 2
0 0 2 3



R4 − 2R3 −→


1 0 8 −1
0 1 3 −1
0 0 1 2
0 0 0 −1



Now recall how elementary row operations interact with determinants. Adding
a multiple of row to another doesn’t change the determinant. Since all of
the operations were adding a multiple of some row to another, we see that
in fact

det(A) = det


1 0 8 −1
0 1 3 −1
0 0 1 2
0 0 0 −1

 = −1.
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Question 5. Suppose that we are given a table of data

x 1 2 3 4
y -2 3 7 10

Find constants m, b so that the equation

y = mx+ b

most closely approximates the data in the table. (hint: use least squares)

Solution 5. The equation y = mx+ b along with the data table gives us the
four linear equations

−2 = m+ b

3 = 2m+ b

7 = 3m+ b

10 = 4m+ b

We convert this system to matrix form:

A

[
m
b

]
=


−2
3
7
10

 ,
where

A =


1 1
2 1
3 1
4 1

 .
This system is inconsistent. A least-squares solution to this is given by
solving the consistent system

ATA

[
m
b

]
= AT


−2
3
7
10

 ,
or rather [

30 10
10 4

] [
m
b

]
=

[
65
18

]
.
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The matrix

[
30 10
10 4

]
is invertible, and its inverse is

[
1/5 −1/2
−1/2 3/2

]
.

Therefore a least squares solution is[
m
b

]
=

[
1/5 −1/2
−1/2 3/2

] [
65
18

]
=

[
4

−10/2

]
Thus the closest fit to the data is y = 4x− 10/2.

Question 6. Suppose that f is a linear function from R3 to R4 satisfying

f

 1
1
0

 =


1
2
3
4



f

 0
1
1

 =


2
4
6
8



f

 1
0
1

 =


4
3
2
1


(a) Find a 4× 3 matrix A satisfying f(~v) = A~v.

(b) Find a basis for the null space of A

(c) Determine the rank and nullity of A

Solution 6.

(a) In order to find A, we need to determine where f sends the standard
basis vectors ~e1, ~e2, and ~e3. First note that

~e1 = (1/2)

 1
1
0

− (1/2)

 0
1
1

+ (1/2)

 1
0
1


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and therefore since f is linear

f(~e1) = (1/2)f

 1
1
0

− (1/2)f

 0
1
1

+ (1/2)f

 1
0
1



= (1/2)


1
2
3
4

− (1/2)


2
4
6
8

+ (1/2)


4
3
2
1

 =


3/2
1/2
−1/2
−3/2


Similarly,

~e2 = (1/2)

 1
1
0

+ (1/2)

 0
1
1

− (1/2)

 1
0
1


and since f is linear

f(~e2) = (1/2)f

 1
1
0

+ (1/2)f

 0
1
1

− (1/2)f

 1
0
1



= (1/2)


1
2
3
4

+ (1/2)


2
4
6
8

− (1/2)


4
3
2
1

 =


−1/2
3/2
7/2
11/2


and also

~e3 = −(1/2)

 1
1
0

+ (1/2)

 0
1
1

+ (1/2)

 1
0
1


and therefore since f is linear

f(~e3) = −(1/2)f

 1
1
0

+ (1/2)f

 0
1
1

+ (1/2)f

 1
0
1



= −(1/2)


1
2
3
4

+ (1/2)


2
4
6
8

+ (1/2)


4
3
2
1

 =


5/2
5/2
5/2
5/2


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If f(~v) = A~v, then in particular f(~ej) = A~ej, so f(~ej) must be the j’th
column of A. This tells us

A =


3/2 −1/2 5/2
1/2 3/2 5/2
−1/2 7/2 5/2
−3/2 11/2 5/2


(b) We calculate the null space of A in the usual way, finding

N (A) = span


 2

1
−1

 ,

so that a basis for N (A) is the set with one vector
 2

1
−1

 .

(c) Part (b) shows us that the nullity of A is 1. Therefore by the rank nullity
theorem, the rank of A must be 3− 1 = 2.

Question 7. Let A be the matrix defined by

A =

 7 −4 0
8 −5 0
6 −6 3


1. Find all the eigenvalues of A

2. For each eigenvalue, compute a basis of the corresponding eigenspace

3. Determine the algebraic and geometric multiplicity of each eigenvalue
of A

4. Let

~v =

 1
11
5

 .
Using (b), determine the value of A10~v. (hint: expand ~v in terms of
the various eigenvectors)
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Solution 7.

(a) We calculate det(A − tI) = −(t − 3)2(t + 1). Therefore the eigenvalues
of A are −1 and 3

(b) We first calculate the RREF of A− (−1)I = A+ I to be 1 0 −2/3
0 1 −4/3
0 0 0

 .
Therefore

E−1 = N (A+ I) = span


 2/3

4/3
1


so that E−1 is one dimensional with basis

 2/3
4/3
1


We next calculate the RREF of A− 3I to be

A =

 1 −1 0
0 0 0
0 0 0


Therefore

E3 = N (A− 3I) = span


 1

1
0

 ,
 0

0
1


so that E2 is two dimensional with basis

span


 1

1
0

 ,
 0

0
1


(c) Parts (a) and (b) show that

• eigenvalue −1 has algebraic multiplicity 1 and geometric multiplic-
ity 1
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• eigenvalue 3 has algebraic multiplicity 2 and geometric multiplicity
2

(d) We find that

~v = 15

 2/3
4/3
1

− 9

 1
1
0

− 10

 0
0
1


Therefore

A10~v = 15A10

 2/3
4/3
1

− 9A10

 1
1
0

− 10A10

 0
0
1


= 15(−1)10

 2/3
4/3
1

− 9(3)10

 1
1
0

− 10(3)10

 0
0
1


=

 −531431
−531421
−590475


Question 8. Consider the matrix A defined by

A =

 −7 4 −3
8 −3 3
32 −16 13


(a) Calculate the characteristic polynomial of A

(b) Use (a) to show that 1 is an eigenvalue, and calculate its algebraic mul-
tiplicity

(c) Find a basis for E1, and determine the geometric multiplicity of 1

Solution 8.

(a) We calculate det(A− tI) = −(t− 1)3

(b) Since the eigenvalues of A are exactly the roots of the characteristic
polynomial, this shows that 1 is an eigenvalue (and in fact the only
eigenvalue). Its algebraic multiplicity is 3.
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(c) We calculate the RREF of A− λI with λ = 1 to be

A =

 1 −1/2 3/8
0 0 0
0 0 0


Therefore the null space of A− I is

E1 = N (A− I) = span


 1/2

1
0

 ,
 −3/8

0
1


It’s easy to check that the set

 1/2
1
0

 ,
 −3/8

0
1


is linearly independent. Since it spans E1, this is a basis for E1. This
also shows that the algebraic multiplicity of λ is 2.

Question 9. Write down an example of a matrix A which is not diagonal,

but is similar to the matrix C =

[
1 0
0 −1

]
.

Solution 9. Easy! Just pick a (nondiagonal) invertible matrix B and set
A = BCB−1. Then A and C will be similar (clearly) and A will not be

diagonal. Now let’s do this explicitly. Take B =

[
1 1
0 1

]
, then

A = BCB−1 =

[
1 −2
0 −1

]
.

is similar to C.

3 True-False Type Questions

For each of the following questions, determine whether the statement is
TRUE or FALSE.
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TF 1 Let A,B,C be n× n matrices. If A is similar to C and B is similar to
C, then A is similar to B. (TRUE)

TF 2 If A is an n × n matrix, and Am = I for some integer n, then A−1 =
I + A+ A2 + · · ·+ Am−1 (FALSE)

TF 3 Suppose that A and B are two m×n matrices, and that ~b is a vector in
Rm. Then the systems of equations A~x = ~b and B~x = ~b have the same
set of solutions if and only if A and B have the same RREF. (FALSE)

TF 4 If A is a matrix and A2 is the zero matrix, then A is the zero matrix.
(FALSE)

TF 5 If A is an m× n matrix, and B,C are `×m matrices, and BA = CA,
then B = C. (FALSE)

TF 6 Every set of nonzero orthogonal vectors in Rn is linearly independent.
(TRUE)

TF 7 Every nontrivial subspace of Rn has an orthogonal basis. (TRUE)

TF 8 Every nontrivial subspace of Rn has an orthonormal basis. (TRUE)

TF 9 A subset of a linearly independent set of vectors is linearly independent.
(TRUE)

TF 10 Any set of linearly independent vectors in a subspace V of Rn can be
extended to a basis for V . (TRUE)

TF 11 Any set of vectors in a subspace V of Rn that spans V also contains a
basis for V . (TRUE)

TF 12 Let X and Y be subsets of Rn, with X ⊆ Y , and suppose that X is
linearly independent. Then Y is linearly independent (FALSE)

TF 13 If V and W are subspaces of Rn, then so too is the intersection V ∩W
(TRUE)

TF 14 If V and W are subspaces of Rn, then so too is the union V ∪ W
(FALSE)
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TF 15 The linear system of equations A~x = ~b is consistent if and only if ~b
may be expressed as a linear combination of the column vectors of A
(TRUE)

TF 16 If A,B,C are all n× n matrices, then A(BC) = (AB)C (TRUE)

TF 17 If A,B are both n× n matrices, then AB = BA (FALSE)

TF 18 If A,B are both n× n matrices, then (AB)T = BTAT (TRUE)

TF 19 If A is a 2 × 3 matrix and B is a 3 × 2 matrix, then it is possible for
AB to be the 2× 2 identity matrix (TRUE)

TF 20 If A is a 2 × 3 matrix and B is a 3 × 2 matrix, then it is possible for
BA to be the 3× 3 identity matrix (FALSE)

TF 21 If A and B are n×n matrices, then det(AB) = det(A) det(B) (TRUE)

TF 22 If A and B are n × n matrices, then det(A + B) = det(A) + det(B)
(FALSE)

TF 23 If A and B are n× n matrices, then det(AB) = det(BA) (TRUE)

TF 24 If A and B are n× n matrices, then det(AT ) = − det(A) (FALSE)

TF 25 If A is an n×n matrix and ~v is an eigenvector of A with eigenvalue 7,
then 3~v is an eigenvector of A with eigenvalue 21 (FALSE)

TF 26 The only matrix that is similar to the identity matrix is the identity
matrix. (TRUE)

TF 27 If A is a square matrix, then A is similar to −A. (FALSE)

TF 28 If λ is an eigenvalue of A, then λm is an eigenvalue of Am. (TRUE)

TF 29 IfD is a diagonal matrix, and λ is an eigenvalue ofD, then the algebraic
and geometric multiplicities of λ are the same. (TRUE)

TF 30 If A and C are similar matrices, then A and C have the same eigen-
values, with the same multiplicities (both algebraic and geometric).
(TRUE)

TF 31 Zero is never an eigenvalue of a matrix. (FALSE)
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TF 32 If A is a matrix with eigenvalue λ, then λ2 + 2λ− 17 is an eigenvalue
of the matrix A2 + 2A− 17I. (TRUE)

TF 33 The span of any three vectors in R4 is a three dimensional subspace of
R4. (FALSE)

TF 34 If the nullity of A is zero, then the linear homogeneous system of
equations A~x = ~0 has infinitely many solutions. (FALSE)

TF 35 If A is an n × n matrix with two identical rows, then det(A) = 0
(TRUE)

TF 36 If A is an n × n matrix with two identical columns, then det(A) = 0
(TRUE)

TF 37 If A is a 4× 3 matrix, with null(A) = 1, then rank(A) = 2. (TRUE)

TF 38 If A is a square matrix, and B = A3−27A2 + 16A− I, then AB = BA
(TRUE)

TF 39 If A is similar to a diagonalizable matrix, then A is diagonalizable
(TRUE)

4 More Conceptual Questions

Question 10. Suppose that W is the subset of R2 given by

W =

{(
x1
x2

)
: x1, x2 real number, x1x2 = 0

}
.

Prove that W is not a subspace of R2. What closure property fails?

Solution 10. Not closed under addition:
(
1
0

)
and

(
0
1

)
are both vectors in W ,

but their sum
(
1
1

)
is not in W , since 1 · 1 6= 0.

Question 11. Suppose that W is the subset of R2 given by

W =

{(
x1
x2

)
: x1, x2 integers

}
.

Prove that W is not a subspace of R2. What closure property fails?
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Solution 11. Not closed under scalar multiplication:
(
1
0

)
is in W , but

(3/2)
(
1
0

)
=
(
3/2
0

)
is not in W

Question 12. Let a0, . . . , an be constants, not all zero. Show that the set

W =


 x1

...
xn

 : x1, . . . , xn real numbers, a1x1 + · · ·+ anxn = 0

 .

is a subspace of Rn, and show that it’s dimension is exactly n−1. (hint: this
can be done in a very short one or two sentences, by using one of our major
theorems)

Solution 12. Notice thatW = N (A) forA the 1×nmatrixA = [a1 a2 . . . an],
and therefore is a subspace. Moreover, R(A) ⊆ R1, and is not the trivial
subspace since at least one of the ai’s is nonzero. Therefore R(A) = R1, and
in particular is 1-dimensional. The rank-nullity theorem then implies that
N (A) is n− 1 dimensional.

Question 13. Suppose that V is a subspace of Rn, and that {~v1, . . . , ~vd}
is an orthonormal basis for V . Show that the only vector ~v in V satisfying
~vj · ~v = 0 for all 1 ≤ j ≤ d is the zero vector.

Solution 13. Suppose that ~v ∈ V satisfies ~vj ·~v = 0 for all 1 ≤ j ≤ d. Since
{~v1, . . . , ~vd} is a basis for V and ~v ∈ V , there exist constants c1, c2, . . . , cd
such that

~v = c1~v1 + c2~v2 + · · ·+ cd~vd.

Taking the inner product of both sides of this equation with ~vj, and using
the linearity of the inner product, we get

~vj · ~v = c1~vj · ~v1 + c2~vj · ~v2 + . . . cd~vj · ~vd.

Since the basis is orthnormal, ~vj · ~vi = 0 for i 6= j and 1 for i = j. Therefore
we have

~vj · ~v = cj.

However, by assumption ~vj · ~v = 0. Therefore cj = 0. Since j was arbitrary,
this must hold for all j. Therefore

~v = c1~v1 + c2~v2 + · · ·+ cd~vd = 0~v1 + 0~v2 + · · ·+ 0~vd = ~0.
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Question 14. Show that if an n × n invertible matrix A is diagonalizable,
then so too is A−1.

Solution 14. If A is diagonalizable, then there exists a diagonal matrix D
and invertible matrix B such that D = BAB−1. This also shows that D
is equal to a product of three invertible matrices, and must therefore be
invertible. Taking the inverse of both sides, we find

D−1 = (BAB−1)−1.

Now recall the property of inverses that says that if S, T are two n × n
invertible square matrices, then (ST )−1 = T−1S−1. Using this, we calculate

(BAB−1)−1 = ((BA)B−1)−1 = (B−1)−1(BA)−1 = B(BA)−1 = B(A−1B−1) = BA−1B−1.

Therefore
D−1 = BA−1B−1.

In particular, this shows that A−1 is similar to the diagonal matrix D−1, and
is therefore diagonalizable.

Question 15. A square matrix P is called idempotent if P 2 = P . Show
that the only invertible idempotent matrix is the identity matrix. (hint: do
a little matrix algebra on the equation P 2 − P = 0)

Solution 15. Assume that P is invertible and idempotent. Then P 2 − P =
0n, where the 0n on the right represents the n × n zero matrix. Factoring
P 2 − P = P (P − I), we see P (P − I) = 0n. Since P is invertible, we can
multiply both sides by P−1 on the left to find

P − I = P−10n = 0n.

Hence P − I = 0n, and it follows that P = I.

Question 16. Find three 2 × 2 matrices A satisfying the equation A2 = I,
none of which are similar to each other

Solution 16. The three diagonal matrices[
1 0
0 1

] [
−1 0
0 1

] [
−1 0
0 −1

]
are all easily seen to satisfy the equation A2 = I. Moreover, none of them
have all the same eigenvalues, so none of them are similar.

18



Question 17. Write down an example of a matrix which is not diagonaliz-
able.

Solution 17. The simplest example is probably

A =

[
1 1
0 1

]
.

The only eigenvalue of A is 1, with algebraic multiplicity 2. However the
geometric multiplicity of eigenvalue 1 for this matrix is 1. Therefore A is
defective, and thus cannot diagonalizable.

Question 18. Write down an example of a matrix (other than ±I) that is
orthogonal.

Solution 18. For any real value θ, the matrix

Rθ =

[
cos(θ) sin(θ)
− sin(θ) cos(theta)

]
represents the linear transformation that takes a vector in the x, y-plane and
rotates it by θ radians counter-clockwise. Since rotation is norm-preserving,
this is an orthogonal matrix.

Question 19. Show that if A is an n×n orthogonal matrix, then the column
vectors of A are orthogonal.

Solution 19. Remember: an orthogonal matrix preserves norms:

‖A~v‖ = ‖~v‖ for all ~v in Rn.

Now let ~e1, . . . , ~en be the standard basis vectors for Rn. Then for i 6= j we
have

‖A(~ei + ~ej)‖ = ‖~ei + ~ej‖,
and therefore

‖A(~ei + ~ej)‖2 = ‖~ei + ~ej‖2.
Obviously since i 6= j we have ‖~ei + ~ej‖2 = 2, and therefore

2 = ‖A(~ei + ~ej)‖2 = ‖A~ei + A~ej‖2

= (A~ei + A~ej) · (A~ei + A~ej)

= (A~ei) · (A~ei) + 2(A~ei) · (A~ej) + (A~ej) · (A~ej)
= ‖A~ei‖2 + 2(A~ei) · (A~ej) + ‖A~ej‖2

= ‖~ei‖2 + 2(A~ei) · (A~ej) + ‖~ej‖2

= 1 + 2(A~ei) · (A~ej) + 1
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Thus we see 2(A~ei) · (A~ej) = 0. Since A~ei and A~ej are exactly the i and
j’th columns of A, this proves that any two distinct columns of A must be
orthogonal.

Question 20. Suppose that A is a symmetric matrix, and that ~v and ~w are
eigenvectors of A with eigenvalues λ and ω which are not the same. Show
that ~v ⊥ ~w. (hint: think about (A~v) · ~w and ~v · (A~w))

Solution 20. If A is symmetric, then A = AT . Let ~v and ~w be eigenvectors
of A with eigenvalues λ and ω, respectively, with λ 6= ω. Then since AT = A
and matrix multiplication is associative:

(A~v) · ~w = (A~v)T ~w = (~vTAT )~w = ~vT (AT ~w) = ~vT (A~w) = ~v · (A~w).

Thus we see that (A~v) · ~w = ~v · (A~w). Now notice that

(A~v) · ~w = (λ~v) · ~w = λ(~v · ~w),

and also that
~v · (A~w) = ~v · (ω~w) = ω(~v · ~w)

Therefore we must have

λ(~v · ~w) = ω(~v · ~w).

Since λ 6= ω. This implies that ~v · ~w = 0. Thus ~v ⊥ ~w.
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