
Math 309 Section F Name (Print):
Fall 2015
Final Student ID:
December 17, 2015
Time Limit: 1 Hour 50 Minutes

This exam contains 12 pages (including this cover page) and 9 problems. Check to see if any pages
are missing. Enter all requested information on the top of this page, and put your initials on the
top of every page, in case the pages become separated.

You may not use your books or notes on this exam. However, you may use a single, handwritten,
one-sided notesheet and a basic calculator.

You are required to show your work on each problem on this exam. The following rules apply:

• Organize your work, in a reasonably neat and
coherent way, in the space provided. Work scat-
tered all over the page without a clear ordering
will receive very little credit.

• Mysterious or unsupported answers will not
receive full credit. A correct answer, unsup-
ported by calculations, explanation, or algebraic
work will receive no credit; an incorrect answer
supported by substantially correct calculations and
explanations might still receive partial credit.

• If you need more space, use the back of the pages;
clearly indicate when you have done this.

• Box Your Answer where appropriate, in order
to clearly indicate what you consider the answer
to the question to be.

Do not write in the table to the right.

Problem Points Score

1 10

2 10

3 15

4 20

5 20

6 10

7 15

8 10

9 10

Total: 120
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1. (10 points) Find the general solution of the equation

d

dt
~y(t) =

(
1 1
4 1

)
~y(t) +

(
2

−1

)
et.

Solution 1. The characteristic polynomial of the matrix A =

(
1 1
4 1

)
is x2 − 2x − 3 =

(x − 3)(x + 1). Therefore the eigenvalues are −1 and 3. The corresponding eigenspaces are
then easily identified to be:

E−1(A) = span

{(
−1

2

)}
, E3(A) = span

{(
1

2

)}
.

Now to calculate the general solution, we must find a particular solution. For this, we have
three different possible methods.
Method 1: Undetermined coefficients
We propose a solution of the form ~yp(t) = ~cet. Plugging this into the system, we obtain
~cet = A~cet +

(
2
−1
)
et, and therefore (I −A)~cet =

(
2
−1
)
et. It follows that

~c = (I −A)−1
(

2

−1

)
=

(
0 −1/4
−1 0

)(
2

−1

)
=

(
1/4

−2

)
This gives us ~yp =

(
1/4
−2
)
et.

Method 2: Diagonalization

If we let P be the matrix whose columns are an eigenbasis for A, eg. P =

(
−1 1
2 2

)
, then

we have that P−1AP = D for the diagonal matrix D =

(
−1 0
0 3

)
. Now with this in mind,

we define a new function ~z(t) = P−1~y(t). In terms of ~z(t) our original differential equation
becomes:

d

dt
P~z(t) = AP~z(t) +

(
2

−1

)
et.

Multiplying both sides by P−1, and using the fact that P−1AP = D, we then obtain

d

dt
~z(t) = D~z(t) + P−1

(
2

−1

)
et.

Now we calculate that

P−1
(

2

−1

)
=

(
−1 1
2 2

)(
2

−1

)
=

(
−1/2 1/4
1/2 1/4

)(
2

−1

)
=

(
−5/4

3/4

)
.

Therefore we are trying to solve

d

dt
~z(t) =

(
−1 0
0 3

)
~z(t) +

(
−5/4

3/4

)
et.

Since everyting is now diagonal, a particular solution is calculated in the usual Math 307 way.
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We get ~zp(t) =
(−5/8
−3/8

)
et, and therefore

~yp(t) = P~zp(t) =

(
1/4

−2

)
et.

Method 3: Variation of Parameters
Note that since we have an eigenbasis for A, the functions

(−1
2

)
e−t and

(
1
2

)
e3t form a fundamental

set of solutions to the corresponding homogeneous equation. Therefore we have a fundamental
matrix

Ψ(t) =

(
−e−t e3t

2e−t 2e3t

)
.

Note this is note the same as exp(At), but that’s okay – there’s more than one fundamental
matrix!! Now the method of variation of parameters gives us the solution

~yp = Ψ(t)

∫
Ψ(t)−1

(
2

−1

)
etdt.

Now we should be careful here too: since we did not choose the matrix exponential as our
fundamental matrix, it is NOT true that Ψ(−t) = Ψ(t)−1. We actually have to calculate the
inverse directly:

Ψ(t)−1 =

(
(−1/2)et (1/4)et

(1/2)e−3t (1/4)e−3t

)
Trhowing everything together and doing the appropriate integral, we then see that

~yp(t) =

(
1/4

−2

)
et.

Regardless of the method, to get the general solution, we put together the general solution to
the corresponding homogeneous equation with the particular solution:

~y(t) = ~yp(t) + ~yh(t) =

(
1/4

−2

)
et + c1

(
−1

2

)
e−t + c2

(
1

2

)
e3t

where c1 anc c2 are arbitrary constants. Alternatively, we can write

~y(t) = ~yp(t) + ~yh(t) =

(
1/4

−2

)
et +

(
−e−t e3t

2e−t 2e3t

)(
c1
c2

)
.
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2. (a) (5 points) Find the solution of the heat equation problem

ut − 3uxx = 0, u(0, t) = 0, u(4, t) = 0, u(x, 0) = sin(πx)− 2 sin(3πx/4).

(b) (5 points) Find the solution of the heat equation problem

ut − 5uxx = 0, ux(0, t) = 0, ux(6, t) = 0, u(x, 0) = 4− 2 cos(πx/3) + 7 cos(3πx/2).

Solution 2. On this problem, if you did an integral at any point, you wasted effort. You
should be able to do this without an integral, because the initial condition is already written
in terms of an appropriate linear combination of trig functions.

(a) In this case L = 4, α2 = 3, and the boundary conditions are homogeneous Dirichlet, and
therefore we expect

u(x, t) =
∞∑
n=1

bne
−3n2π2t/16 sin(nπx/4).

Plugging in t = 0, this says

u(x, 0) =

∞∑
n=1

bn sin(nπx/4),

and since u(x, 0) = sin(πx) − 2 sin(3πx/4), by inspection, we see that we should take
b4 = 1, b3 = −2,a nd bn = 0 otherwise. Thus

u(x, t) = e−3π
2t sin(πx)− 2e−27π

2t/16 sin(3πx/4).

(b) In this case L = 6, α2 = 5, and the boundary conditions are homogeneous von Neumann,
and therefore we expect

u(x, t) =
a0
2

+

∞∑
n=1

ane
−5n2π2t/36 cos(nπx/6).

Plugging in t = 0, this says

u(x, 0) =
a0
2

+
∞∑
n=1

an cos(nπx/6),

and since 4− 2 cos(πx/3) + 7 cos(3πx/2), by inspection, we see that we should take a0 =
8, a2 = −2, a9 = 7, and an = 0 otherwise. Thus

u(x, t) = 4− 2e−5π
2t/9 cos(πx/3) + 7e−45π

2t/4 cos(3πx/2).
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3. (15 points) Consider the wave equation problem

utt − c2uxx = 0

u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = f(x), ut(x, 0) = 0, 0 ≤ x ≤ 7

where L = 7, c = 1, and

f(x) =


0, 0 ≤ x < 3
1, 3 ≤ x < 4
0, 4 ≤ x < 7

(a) Find the Fourier series solution u(x, t) of the above wave equation for 0 ≤ x ≤ 7 and t > 0
(eg. do not use D’Alembert)

(b) Sketch a graph of the odd, 2L-periodic extension of f(x), including at least two full periods

(c) Sketch a graph of the solution u(x, t) when t = 4 (for this you should use D’Alembert).

Solution 3.

(a) To do this, first note that f(x) =
∑∞

n=1 an sin(nπx/L) for 0 ≤ x ≤ L and

an =

∫ L

0
f(x) sin(nπx/L) =

∫ 4

3
sin(nπx/7) =

−7

nπ
(cos(4nπ/7)− cos(3nπ/7)).

Therefore the solution is

u(x, t) =
∞∑
n=1

−7

nπ
(cos(4nπ/7)− cos(3nπ/7)) sin(nπx/7) cos(nπt/7).

(b)
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f(
x
)

Plot of Odd Periodic Extension of f(x)
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(c) From D’Alembert’s solution, if we extend the definition of f(x) to be defined on the entire
real line by first letting f be odd in the interval [−7, 7], and then be 14-periodic, as in the
picture in (b), then since c = 1 the solution is given by

u(x, t) =
1

2
(f(x+ t) + f(x− t)) .

Now when t = 4, we have that

f(x+ 4) =


0, 0 ≤ x < 3
0, 3 ≤ x < 6
−1, 6 ≤ x < 7

and also that

f(x− 4) =


−1, 0 ≤ x < 1
0, 1 ≤ x < 4
0, 4 ≤ x < 7

Therefore

u(x, 4) =


−1/2, 0 ≤ x < 1

0, 1 ≤ x < 6
−1/2, 6 ≤ x < 7

A plot is included below.
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4. (20 points) Find the solution of Laplace’s equation

uxx + uyy = 0,

inside the interior of the rectangle bounded by the lines x = 0, x = 1, y = 0, and y = 2, and
satisfying the boundary conditions (for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2):

u(x, 0) = 0, u(x, 2) = 0, u(0, y) = 0, u(1, y) = 1− |y − 1|.

Solution 4. We calculate the sine transform of the initial condition with period 2L = 4:

u(1, y) =

∞∑
n=1

8 sin(πn/2)

n2π2
sin(nπy/2).

Now the nonhomogeneous boundary is the East wall, and therefore we expect that the solution
is of the form

u(x, y) =

∞∑
n=1

cn sinh(nπx/2) sin(nπy/2).

In particular, this says that

u(1, y) =
∞∑
n=1

cn sinh(nπ/2) sin(nπy/2),

and from our sine transformation above, we know that we should take

cn =
8 sin(πn/2)

n2π2 sinh(nπ/2)
.

Therefore we find

u(x, y) =
∞∑
n=1

8 sin(πn/2)

n2π2 sinh(nπ/2)
sinh(nπx/2) sin(nπy/2).
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5. (20 points) Find the general solution of the system of equations

d

dt
~y(t) = A~y(t), A =

 3 −2 2
−6 7 2
−6 6 3

 .

Solution 5. The first thing that we do is calculate the eigenvalues of the matrix A. To do
this, we will use elementary row operations to create a shortcut. We want to know

det(A− xI) = det

 3− x −2 2
−6 7− x 2
−6 6 3− x

 .

Now recall that adding a multiple of one row to another, or one column to another, does not
change the determinant! Therefore

det(A− xI) = det

 3− x −2 2
0 1− x −1 + x
−6 6 3− x

 = det

 3− x 0 0
0 1− x −1 + x
−6 6 3− x


From this we see that

det(A− xI) = (3− x)(1− x)(9− x).

Therefore the eigenvalues are 1, 3, 9. Now at this stage, we can go two routes – we can cal-
culate eigenvectors for each eigenvalue, or we can just calculate the matrix exponential using
Sylvester’s formula. Let’s go the first route. We calculate

E1(A) = span


 1

1
0

 , E3(A) = span


 1

1
1

 , E9(A) = span


 0

1
1


Thus the general solution is

~y(t) = c1

 1
1
0

 et + c2

 1
1
1

 e3t + c3

 0
1
1

 e9t.
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6. (10 points) Use separation of variables to convert the PDE

uxx + uxt + ut = 0

into two second-order ODEs.

Solution 6. We assume u(x, t) = F (x)G(t), so that

F ′′(x)G(t) + F ′(x)G′(t) + F (x)G′(t) = 0.

Now we can rewrite this as

F ′′(x)G(t) = −(F ′(x) + F (x))G′(t),

and dividing by G(t)(F ′(x) + F (x)), we obtain:

F ′′(x)/(F ′(x) + F (x)) = −G′(t)/G(t).

Now this says that a function of x only is equal to a function of t only, and so both must be
equal to a constant −λ. In other words

F ′′(x)/(F ′(x) + F (x)) = −λ, −G′(t)/G(t) = −λ.

This simplifies to
F ′′(x) + λF ′(x) + λF (x) = 0, G′(t)− λG(t) = 0.
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7. (15 points) Calculate the Fourier series of the function

f(x) = x2 − x, −1 ≤ x ≤ 1

with f(x+ 2) = f(x) for all x.

Solution 7. Using the Euler-Fourier formulas, and even-odd arguments:

an =
1

1

∫ 1

−1
(x2 − x) cos(nπx)dx =

1

1

∫ 1

−1
x2 cos(nπx)dx =

4(−1)n

n2π2
,

except for a0, which is given by 2/3. Furthermore,

bn =
1

1

∫ 1

−1
(x2 − x) sin(nπx)dx =

1

1

∫ 1

−1
−x sin(nπx)dx =

2(−1)n

nπ
.

Therefore we find

f(x) =
1

3
+
∞∑
n=1

(
2(−1)n

nπ
sin(nπx) +

4(−1)n

n2π2
cos(nπx)

)
.
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8. (10 points) Find the solution of the heat equation problem

ut − 3uxx = 0, u(0, t) = 3, u(1, t) = 1, u(x, 0) = −3(x2 − 1) + 3x

Solution 8. This is a problem with nonhomogeneous boundary conditions, so we first need to
calculate the steady state solution. Doing this the usual way, we obtain

usteady(x) = −2x+ 3.

Then we define v(x, t) = u(x, t)− usteady(x), which satisfies

vt − 3vxx = 0, v(0, t) = 0, v(1, t) = 0, v(x, 0) = −3x2 + 5x.

This is a heat equation problem with homogeneous Dirichlet boundary conditions, and therefore
since α2 = 3, L = 1 we know that

v(x, t) =
∞∑
n=1

bne
−3n2π2t sin(nπx).

The values of the bn are given by the appropriate sine series expansion of v(x, 0), eg.

bn = 2

∫ 1

0
(−3x2 + 5x) sin(nπx)dx =

−4

n3π3
((n2π2 + 3)(−1)n − 3).

Thus

u(x, t) = v(x, t) + usteady(x) = −2x+ 3 +
∞∑
n=1

−4

n3π3
((n2π2 + 3)(−1)n − 3)e−3n

2π2t sin(nπx).
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9. (10 points) Find a solution to the wave equation problem

utt − c2uxx = 0

u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = 0, ut(x, 0) = g(x), 0 ≤ x ≤ 1

where L = 1, c = 2, and g(x) = x for 0 ≤ x ≤ 1.

Solution 9. First of all, we look at the 2-periodic sine series for g(x), which is

g(x) =

∞∑
n=1

−2(−1)n

nπ
sin(nπx).

Then the boundary conditions and the initial conditions tell us that the solution we are looking
for should be of the form

u(x, t) =

∞∑
n=1

cn sin(nπx) sin(2nπt).

We calculate that

ut(x, t) =

∞∑
n=1

2nπcn sin(nπx) cos(2nπt),

and therefore

ut(x, 0) =
∞∑
n=1

2nπcn sin(nπx).

Thus from the above sine series, we should take cn = −(−1)n
n2π2 , making

u(x, t) =
∞∑
n=1

(−1)n+1

n2π2
sin(nπx) sin(2nπt).


