
MATH 307: Homework #2

Due on: October 26, 2015

Problem 1 Jordan Normal Form

For each of the following values of the matrix A, find an invertible matrix P and a
matrix N in Jordan normal form such that P−1AP = N .

(a)

A =

(
1 1
0 1

)
(b)

A =

(
1 −1
1 2

)
(c)

A =

(
1 1
−1 1

)
(d)

A =

(
0 1
1 −2

)
(e)

A =

(
0 −1
1 −2

)

(f)

A =

 0 0 24
1 0 2
0 1 −5


(g)

A =

 0 0 −1
1 0 −3
0 1 −3


(h)

A =

 0 0 −2
1 0 3
0 1 0


(i)

A =

 −1 −1 0
4 3 0
−6 −3 1


. . . . . . . . .

Solution 1.

(a) The matrix A is already in Jordan normal form, so we can take P = I and N = A.

(b) The characteristic polynomial is pA(x) = x2−3x+3. The eigenvalues are therefore
(3/2)±i

√
3/2. Therefore the matrix is diagonalizable, eg. its Jordan normal form

N will be a diagonal matrix. Finding an eigenvector for each eigenvalue, we get

P =

(
(−1/2) + i

√
3/2 (−1/2)− i

√
3/2

1 1

)
, N =

(
(3/2) + i

√
3/2 0

0 (3/2)− i
√

3/2

)
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(c) The characteristic polynomial is pA(x) = x2−2x+2. The eigenvalues are therefore
1± i. Therefore the matrix is diagonalizable, eg. its Jordan normal form N will
be a diagonal matrix. Finding an eigenvector for each eigenvalue, we get

P =

(
i −i
−1 −1

)
, N =

(
1 + i 0

0 1− i

)
(d) The charcteristic polynomial is pA(x) = x2+2x−1. The eigenvalues are therefore
−1±

√
2. Therefore the matrix is diagonalizable, eg. its Jordan normal form N

will be a diagonal matrix. Finding an eigenvector for each eigenvalue, we get

P =

(
1 +
√

2 1−
√

2
1 1

)
, N =

(
−1 +

√
2 0

0 −1−
√

2

)

(e) The characteristic polynomial is pA(x) = x2 + 2x+ 1. The eigenvalue is −1 with
algebraic multiplicity two. However the geometric multiplicity is one and so N
will be a 2 × 2 Jordan block N = J2(−1). Note that any nonzero vector in R2

will be a generalized eigenvector, since (A − (−1)I)2 = 0. Note that ~v =
(
1
0

)
is

not an eigenvector of A, and so it must be a generalized eigenvector of rank 2.
This means that

~w := (A− (−1)I)~v =

(
1

1

)
is an eigenvector of A with eigenvalue −1. Thus we may take

P =

(
1 1
1 0

)
, N = J2(−1) =

(
−1 1
0 −1

)
(f) The characteristic polynomial of this matrix is pA(x) = −x3 − 5x2 + 2x + 24 =
−(x − 2)(x + 3)(x + 4). The eigenvalues are therefore 2,−3,−4. The matrix is
therefore diagonalizable, eg. its Jordan form N will be a diagonal matrix. Finding
an eigenvector for each eigenvalue, we get

P =

 12 −8 −6
7 2 1
1 1 1

 , N =

 2 0 0
0 −3 0
0 0 −4


(g) The characteristic polynomial of this matrix is pA(x) = −x3 − 3x2 − 3x − 1 =
−(x + 1)3. The eigenvalue is therefore −1 with algebraic multiplicity 3. We
calculate the corresponding eigenspace

E−1(A) = N(A− (−1)I)) = span


 1

2
1

 .
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Therefore the geometric multiplicity is 1. It follows that the Jordan normal form
of A is a 3 × 3 Jordan block N = J3(−1). We find a generalized eigenvector of
rank 2 by solving

(A− (−1)I)~v =

 1
2
1


A solution is

~v =

 1
1
0

 .

We also need a generalized eigenvector of rank 3 in this case, which we obtain by
solving the equation

(A− (−1)I)~v =

 1
1
0

 .

A solution is

~v =

 1
0
0


Putting this all together, we have

P =

 1 1 1
2 1 0
1 0 0

 , N = J3(−1) =

 −1 1 0
0 −1 1
0 0 −1


(h) The characteristic polynomial is pA(x) = −x3 + 3x − 2 = (x − 1)2(x + 2). We

calculate the corresponding eigenspaces

E−2(A) = span


 1
−2
1


E1(A) = span


 2
−1
−1


In particular, this shows that 1 has algebraic multiplicity two but geometric
multiplicity 1, and so we must still find a generalized eigenvector of rank two
with eigenvalue 1. We can do this by solving the equation

(A− (1)I)~v =

 2
−1
−1

 .

A solution is given by

~v =

 0
−2
−1

 .
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Putting this all together we have

P =

 1 2 0
−2 −1 −2
1 −1 −1

 , N =

 −2 0 0
0 1 1
0 0 1

 .

(i) This problem is a bit of a challenge. If you didn’t get it, that’s ok! This problem
will be extra credit. The characteristic polynomial of A is pA(x) = −(x −
1)3, and therefore we have the eigenvalue 1 with algebraic multiplicity three.
Furthermore, we calculate the eigenspace

E1(A) = span


 1
−2
0

 ,

 0
0
1


Therefore the geometric multiplicity of 1 is two. This means that we need to find
a generalized eigenvector of rank 2. How can we do this? We can try to solve

(A− (1)I)~v =

 1
−2
0


but we find that this has no solution. Similarly can try to solve

(A− (1)I)~v =

 0
0
1

 ,

but again this has no solution. What’s the deal? The answer is we need to
choose the “right” basis for the eigenspace E1(A). The way to do this is to find a
generalized eigenvector first, and then find the regular eigenvectors after. Finding
a generalized eigenvector is easy, actually. One may check that (A− (1)I)2 = 0,
and therefore every nonzero vector in R3 is a generalized eigenvector of A with
eigenvalue λ. Choose any one that is not already an eigenvector of A, say

~v =

 1
0
0

 .

Then we know that ~v is a generalized eigenvector of A, and therefore must have
rank 2. Now if we define ~w by

~w := (A− (1)I)~v =

 −2
4
−6


then ~w is an eigenvector of A with eigenvalue 1. Finally if we choose any other

eigenvector ~e to complete a basis for E1(A) (e.g. ~e =

 0
0
1

 but it doesn’t matter
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which), we have the three vectors which will work as the column vectors for P :

P = (~e ~v ~w) =

 −2 1 0
4 0 0
−6 0 1

 , N =

 1 1 0
0 1 0
0 0 1

 .

Note here that the positioning of the column vectors in P is delicate and impor-
tant. The generalized eigenvectors corresponding to a particular Jordan block
need to be positioned in order of increasing rank.

Problem 2 Matrix Exponential

For each of the values of the matrix A in the previous problem, determine the value
of exp(At)

. . . . . . . . .

Solution 2.

(a) We have the same eigenvalue 1, repeated twice, so

exp(At) = et(I + (A− I)t) =

(
et tet

0 et

)
(b) We have two complex eigenvalues a± ib for a = 3/2 and b =

√
3/2, and therefore

exp(At) = e(3/2)t cos((
√
3/2)t)I + e(3/2)t

2√
3
(A− (3/2)I) sin((

√
3/2)t)

=

(
e(3/2)t cos((

√
3/2)t) + (−1/

√
3)e(3/2)t sin((

√
3/2)t) (−5/

√
3)e(3/2)t sin((

√
3/2)t)

(−1/
√
3)e(3/2)t sin((

√
3/2)t) e(3/2)t cos((

√
3/2)t) + (1/

√
3)e(3/2)t sin((

√
3/2)t)

)

(c) We have two complex eigenvalues a± ib for a = 1 and b = 1, and therefore

exp(At) = et cos(t)I + et(A− (1)I) sin(t) =

(
et cos(t) et sin(t)
−et sin(t) et cos(t)

)
(d) The eigenvalues are real and distinct, given by r1 = −1 +

√
2 and r2 = −1−

√
2

and therefore

exp(At) =
1

2
√
2
e(−1+

√
2)t(A− (−1−

√
2)I)− 1

2
√
2
e(−1−

√
2)t(A− (−1 +

√
2)I)

=
1

2
√
2

(
(1 +

√
2)e(−1+

√
2)t − (1−

√
2)e(−1−

√
2)t e(−1+

√
2)t − e(−1−

√
2)t

e(−1+
√
2)t − e(−1−

√
2)t (−1 +

√
2)e(−1+

√
2)t − (−1−

√
2)e(−1−

√
2)t

)

(e) The eigenvalue of A is −1 repeated twice. Therefore

exp(At) = e−t(I + (A− (−1)I)t) =

(
e−t + te−t −te−t
te−t e−t − te−t

)
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(f) The eigenvalues of A are r1 = 2, r2 = −3, r3 = −4. These are all distinct, so by
Sylvester’s formula we have that

exp(At) = er1t
1

(r1 − r2)(r1 − r3)
(A− r2I)(A− r3I)

+ er2t
1

(r2 − r1)(r2 − r3)
(A− r1I)(A− r3I)

+ er3t
1

(r3 − r1)(r3 − r2)
(A− r1I)(A− r2I)

=
1

30
e2t(A+ 3I)(A+ 4I)− 1

5
e−3t(A− 2I)(A+ 4I) + e−4t

1

6
(A− 2I)(A+ 3I)

Calculating this we get the matrix (12/30)e2t + (8/5)e−3t − (6/6)e−4t (24/30)e2t − (24/5)e−3t + (24/6)e−3t (48/30)e2t + (72/5)e−3t − (96/6)e−3t

(7/30)e2t − (2/5)e−3t + (1/6)e−4t (14/30)e2t + (6/5)e−3t − (4/6)e−3t (28/30)e2t − (18/5)e−3t + (16/6)e−3t

(1/30)e2t − (1/5)e−3t + (1/6)e−4t (2/30)e2t + (3/5)e−3t − (4/6)e−3t (4/30)e2t − (9/5)e−3t + (16/6)e−3t


(g) The eigenvalues of this matrix are all −1 (repeated three times). Therefore

exp(At) = e−t(I+(A−(−1)I)t+
1

2
(A−(−1)I)2t2) = e−t

 1 + t+ 1
2
t2 −1

2
t2 −t+ 1

2
t2

t+ t2 1 + t− t2 −3t+ t2
1
2
t2 t− 1

2
t2 1− 2t+ 1

2
t2


(h) The eigenvalues of this matrix are −2, and 1 twice repeated. We calculate the

matrix exponential using the Jordan normal form found in Problem 1 part (h).
To remind ourselves, P−1AP = N with

P =

 1 2 0
−2 −1 −2
1 −1 −1

 , N =

 −2 0 0
0 1 1
0 0 1

 .

From this we have
exp(At) = P exp(Nt)P−1

where

exp(Nt) =

 e−2t 0 0
0 et tet

0 0 et


Therefore since

P−1 =

 1/9 −2/9 4/9
4/9 1/9 −2/9
−3/9 −3/9 −3/9


the answer is P exp(Nt)P−1, the calculation of which we leave to the reader.

(i) In this case the eigenvalues of A are 1 (repeated three times). Therefore

exp(At) = e−t(I + (A− (1)I)t+
1

2
(A− (1)I)2t2) = et

 1− 2t −t 0
4t 1 + 2t 0
−6t −3t 1
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Problem 3 Fundamental Matrix

Find a fundamental matrix for each of the following systems of equations

(a)

x′ = x+ y

y′ = x− y

(b)

x′ = −x− 4y

y′ = x− y

(c)

x′ = x+ y

y′ = 4x− 2y

(d)

x′ = −x− 4y

y′ = x− y

(e)

x′ = x− y
y′ = 5x− 3y

(f)

x′ = 3x− 4y

y′ = x− y

(g)

x′ = 4x− 8y

y′ = 8x− 4y

. . . . . . . . .

Solution 3.

(a) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are ±
√

2.
Therefore we get that

Ψ(t) = exp(At) =
1

2
√

2

(
(1 +

√
2)e
√
2t − (1−

√
2)e−

√
2t e

√
2t − e−

√
2t

e
√
2t − e−

√
2t (−1 +

√
2)e
√
2t − (−1−

√
2)e−

√
2t

)

(b) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are −1 ± 2i.
Therefore we get that

Ψ(t) = exp(At) =

(
e−t cos(2t) −2e−t sin(2t)

(1/2)e−t sin(2t) e−t cos(2t)

)
(c) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are 2 and −3.

Therefore we get that

Ψ(t) = exp(At) =
1

5

(
4e2t + e−3t e2t − e−3t
4e2t − 4e−3t e2t + 4e−3t

)
(d) This is a repeat of (b)
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(e) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are −1 ± i.
Therefore we get that

Ψ(t) = exp(At) =

(
e−t cos(t) + 2e−t sin(t) −e−t sin(t)

5e−t sin(t) e−t cos(t)− 2e−t sin(t)

)
(f) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are 1, repeated

twice. Therefore

Ψ(t) = exp(At) = et(I + (A− I)t) = et
(
et + 2tet −4tet

tet et − 2tet

)

(g) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are ±4
√

3.
Therefore

Ψ(t) = exp(At) =
1

8
√

3

(
(4 + 4

√
3)e4

√
3t − (4− 4

√
3)e−4

√
3t −8e4

√
3t + 8e−4

√
3t

8e4
√
3t − 8e−4

√
3t (−4 + 4

√
3)e4

√
3t − (−4− 4

√
3)e−4

√
3t

)

Problem 4 Matrix Sine and Cosine

Let A be an n×n matrix. This problem concerns the matrix valued functions sin(At)
and cos(At).

(a) Show that d
dt

sin(At) = A cos(At)

(b) Show that d
dt

cos(At) = −A sin(At)

(c) Let ~v, ~w ∈ Rn. Show that

~y(t) := cos(At) · ~v + sin(At)~w

is a solution to the differential equation

~y′′(t) = −A2~y(t).

. . . . . . . . .

Solution 4.

(a) We rely on the definition of matrix sine and matrix cosine. Recall that they are
defined in terms of the Taylor series

sin(At) =
∞∑
n=0

(−1)n

(2n+ 1)!
A2n+1t2n+1 = At− 1

6
A3t3 +

1

5!
A5t5 − 1

7!
A7t7 + . . .

cos(At) =
∞∑
n=0

(−1)n

(2n)!
A2nt2n = I − 1

2
A2t2 +

1

4!
A4t4 − 1

6!
A6t6 + . . .
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When we take the derivative:

d

dt
sin(At) = A− 3

6
A3t2 +

5

5!
A5t4 − 7

7!
A7t6 + . . .

= A− 1

2
A3t2 +

1

4!
A5t4 − 1

6!
A7t6 + . . .

= A(I − 1

2
A2t2 +

1

4!
A4t4 − 1

6!
A6t6 + . . . ) = A cos(At).

(b) When we take the derivative:

d

dt
cos(At) = 0− 2

2
A2t+

4

4!
A4t3 − 6

6!
A6t5 + . . .

= −A2t+
1

3!
A4t3 − 1

5!
A6t5 + . . .

= −A(At− 1

3!
A3t3 +

1

5!
A5t5 − . . . ) = −A sin(At).

(c) Using (a) and (b), we calculate

~y′(t) = −A sin(At) · ~v + A cos(At)~w

and also

~y′′(t) = −A2 cos(At) ·~v−A2 sin(At)~w = −A2(cos(At) ·~v+sin(At) · ~w) = −A2~y(t).

Therefore ~y(t) satisfies the differential equation.

Problem 5 Second-order differential equations

Consider the differential equation

y′′(t) + by′(t) + cy(t) = 0. (1)

If we make the substitution, z(t) = y′(t), then we may rewrite Equation (1) as a
system of two first-order equations{

y′(t) = z(t)
z′(t) = −cy(t)− bz(t)

(2)

(a) Show that the characteristic polynomial of Equation (1) is the same as the char-
acteristic polynomial of the matrix associated with the linear system in Equation
(2).

(b) Find the fundamental matrix of the system in Equation (2) when b = 5 and c = 4

(c) Find the fundamental matrix of the system in Equation (2) when b = 2 and c = 5

(d) Find the fundamental matrix of the system in Equation (2) when b = 2 and c = 1.
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(e) For (b)-(d), explain how the fundamental matrix you found corresponds to the
general solution of Equation (1).

. . . . . . . . .

Solution 5.

(a) The characteristic polynomial of Equation (1) is defined to be x2 + bx + c. The
matrix associated with Equation (2) is

A =

(
0 1
−c −b

)
which has the characteristic polynomial x2 + bx+ c (which is the same!).

(b) When b = 5 and c = 4, then the eigenvalues of A are −1 and −4, and therefore
the fundamental matrix is

Ψ(t) = exp(At) =
1

3

(
4e−t − e−4t e−t − e−4t
−4e−t + 4e−4t −e−t + 4e−4t

)
(c) When b = 2 and c = 5, then the eigenvalues of A are −1± 2i, and therefore the

fundamental matrix is

Ψ(t) = exp(At) =

(
e−t cos(t) + (1/2)e−t sin(t) (1/2)e−t sin(t)

(−5/2)e−t sin(t) e−t cos(t)− (1/2)e−t sin(t)

)
(d) When b = 2 and c = 1, then the eigenvalues of A are −1 repeated twice, and

therefore the fundamental matrix is

Ψ(t) = exp(At) =

(
e−t + te−t te−t

−te−t e−t − te−t
)

(e) In each case, the top two entries of the fundamental matrix form a fundamental
set of solutions to Equation (1). In case (b), the two roots are real, and the fun-
damental set of solutions we get consist of exponentials with these coefficients. In
case (c), the roots have an imaginary component which determines the frequency
of the sine and cosine terms in the solution, just like back in Math 307. In the last
case, we have a repeated root, and the solution that we get has eλt and teλt just
like we learned to expect from our study of second-order differential equations.
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Problem 6 A Zombie Outbreak

A zombie outbreak occurs in the isolated country Fictionland. Assume that the
human per-capita birth rate in Fictionland is 0.013 and the per-capita death rate of
humans is 0.008. The zombie outbreak leads to the conversion of humans to zombies
at a rate of 0.003z(t), where z(t) is the zombie population of Fictionland at time t.
Humans also destroy the zombies at a rate of dh(t), where h(t) is the population of
humans in Fictionland at time t. Assuming that at time t = 0, there is an equal
population of humans and zombies. For which values of d does the human population
eventually die out?

. . . . . . . . .

Solution 6. To set up this problem, we must figure out differential equations de-
scribing the rate of change of the human and zombie populations as a function of
time. The main idea is

dh

dt
= (rate in)− (rate out)

and similarly for dz
dt

. What is the rate in for humans? The only way more humans
appear is by being born. Therefore the rate in is 0.013h. The way that humans leave
the system is by dying or being zombified. Therefore the rate out is 0.008h+ 0.003z,
and we may write

dh

dt
= 0.013h− (0.008h+ 0.003z) = 0.005h− 0.003z.

In a similar way, we find
dz

dt
= −dh+ 0.003z.

In terms of matrices, this says:(
h′

z′

)
= A

(
h

z

)
, A =

(
0.005 −0.003
−d 0.003

)
.

Moreover, our initial condition is h(0) = z(0) = c for some positive constant c.
For what values of d will the human population never die out? Well, the human
population will die out if h(t) ever reaches 0. When can this happen?

Let’s examine the eigenvalues of A. The characteristic polynomial of A is

pA(x) = x2 − 0.008x+ 0.003(0.005− d).

The roots are therefore

1

2

(
0.008±

√
0.0082 − 4 ∗ 0.003 ∗ (0.005− d)

)
Therefore if the quantity inside the radical is positive, then ~0 is an unstable node or a
saddle, and either way this forces the human population to shoot off toward infinity –
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in particular the humans survive. If the quantity inside the radical is negative, then
the origin is an unstable spiral. In this case, the solution traces a curve that rotates
around the origin – in particular h(t) will drop to zero at some point. The quantity
in the radical is positive if and only if d ≥ −(1/3000), and for these values of d the
human population survives.

Problem 7 Uniqueness of Fundamental Matrix

Let A(t) be a matrix continuous on the interval (α, β). Show that if Ψ(t) and Φ(t)
are two fundamental matrices for the equation

~y′(t) = A(t)~y(t)

on the interval (α, β), then there exists a (constant) invertible matrix P so that
Φ(t) = Ψ(t)P .

. . . . . . . . .

Solution 7. This is a tricky problem again – its solution will also be extra credit.
Let Ψ(t) and Φ(t) be two fundamental matrices for the equation, and choose t0 ∈
(α, β). Set P = Ψ(t0)

−1Φ(t0). Then Φ(t0) = Ψ(t0)P . Moreover, the column vectors of
Φ(t) and Ψ(t) are solutions to ~y′(t) = A(t)~y(t) (because they must form a fundamental
set of solutions). The value of the first column of Φ(t) at t = t0 agrees with the value
of the first column of Ψ(t)P at t = t0. Therefore they both satisfy the same initial
value problem, and by the Existence and Uniqueness Theorem this guarantees that
they are equal for all t in the interval (α, β). The same argument in fact applies to
the second column of each fundamental matrix, as well as the third, etc. Therefore
Φ(t) = Ψ(t)P for all values of t.

Problem 8 Nonhomogeneous Equations

For each of the following, find the general solution.

(a) {
x′ = 2x− y + et

y′ = 3x− 2y + t

(b) {
x′ = x+ y + e−2t

y′ = 4x− 2y − 2et

(c) {
x′ = 2x− 5y − cos(t)
y′ = x− 2y + sin(t)

(d) {
x′ = −4x+ 2y + t3

y′ = 2x− y − t−2

. . . . . . . . .
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