
MATH 309: Homework #3

Due on: November 9, 2015

Problem 1 Boundary Value Problems

For each of the following boundary value problems, find all solutions to the boundary
value problem or show that no solution exists.

(a) y′′ + y = 0, y(0) = 0, y′(π) = 1

(b) y′′ + y = 0, y(0) = 0, y(L) = 0

(c) y′′ + y = x, y(0) = 0, y(π) = 0

. . . . . . . . .

Solution 1. In each case, the general solution is

y(x) = A cos(x) +B sin(x),

so the question is whether or not we can find constants A,B satisfying the boundary
conditions.

(a) The condition y(0) = 0 implies that A = 0. Therefore y(x) = B sin(x). The
condition y′(π) = 0 implies that B = 0, and therefore the only solution is the
trivial solution y = 0.

(b) The condition y(0) = 0 implies that A = 0. Therefore y(x) = B sin(x). The
condition y(L) = 0 implies that B sin(L) = 0, and therefore either B = 0, giving
us the trivial solution, or else L = nπ for some integer n, in which case B can be
anything! Thus we have two cases: if L is not an integer multiple of π, then the
only solution is the trivial solution y = 0. If L = nπ for some integer n, then the
family of all solutions is y = B sin(x).

(c) The condition y(0) = 0 implies that A = 0. Therefore y(x) = B sin(x), therefore
the condition y(π) = 0 is automatically satisfied, leaving implies that B = 0, and
therefore the only solution is the trivial solution y = 0.
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Problem 2 Dirichlet Eigenvalue Problem

Determine for which values of λ the boundary value problem

y′′ + λy = 0, y(0) = 0, y(L) = 0,

has a solution and describe the solutions.

. . . . . . . . .

Solution 2. It’s important to note that the values of λ which work will be dependent
on the value of L – this relationship between λ and L becomes important in the
method of separation of variables later on. Let’s first think about the general solution
to y′′ + λy. The characteristic polynomial of this equation is x2 + λ, which has
roots ±

√
−λ. The general solution therefore takes three distinct forms, depending on

whether λ is positive, negative, or zero.
Case A (λ < 0):
In this case,

√
−λ is real, so the general solution is

y = Ae
√
−λx +Be−

√
−λx.

Then since y(0) = 0, we have A + B = 0. Furthermore, since y(L) = 0 we have
Ae
√
−λL + Be−

√
−λL = 0. Thus we have a homogeneous system of two equations and

two unknowns. In matrix form, this is(
1 1

e
√
−λL e−

√
−λL

)(
A

B

)
=

(
0

0

)
.

The determinant of the above matrix is e−
√
−λL− e

√
−λL, which is nonzero. Therefore

the matrix is nonsingular, and the homogeneous system of equations has exactly one
solution: the trivial solution. Therefore A = B = 0, making y = 0 the only solution
to the boundary value problem.
Case B (λ = 0):
In this case,

√
−λ is 0, so the general solution is

y = A+Bx.

Then since y(0) = 0, we have A = 0. Furthermore, since y(L) = 0 we have A+BL =
0. Since A = 0, this also says that B = 0, and therefore the only solution is the
trivial solution y = 0.
Case C (λ > 0):
In this case,

√
−λ = i

√
λ is imaginary, so the general solution is

y = A cos(
√
λx) +B sin(

√
λx).

Then since y(0) = 0, we have A = 0, making y = B sin(
√
λx). Then since y(L) = 0,

we have that B = 0 or sin(
√
λL) = 0. In the former case, y = 0. In the latter
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case,
√
λL = nπ for some integer n and therefore λ = n2π2/L2. In this case y =

B sin(
√
λx) = B sin(nπx/L) is a solution for any value of B.

SUMMARY:
The boundary value problem has at least one solution for every value of λ: the trivial
solution. The boundary value problem has more than the trivial solution exactly
when λ = n2π2/L2 for some nonzero integer n, in which case anything of the form
B sin(nπx/L) is a solution.

Problem 3 von Neumann Eigenvalue Problem

Determine for which values of λ the boundary value problem

y′′ + λy = 0, y′(0) = 0, y′(L) = 0,

has a solution and describe the solutions.

. . . . . . . . .

Solution 3. It’s important to note that the values of λ which work will be dependent
on the value of L – this relationship between λ and L becomes important in the
method of separation of variables later on. Let’s first think about the general solution
to y′′ + λy. The characteristic polynomial of this equation is x2 + λ, which has
roots ±

√
−λ. The general solution therefore takes three distinct forms, depending on

whether λ is positive, negative, or zero.
Case A (λ < 0):
In this case,

√
−λ is real, so the general solution is

y = Ae
√
−λx +Be−

√
−λx.

We note that
y′ =

√
−λ(Ae

√
−λx −Be−

√
−λx).

Then since y′(0) = 0, we have A − B = 0. Furthermore, since y′(L) = 0 we have
Ae
√
−λL − Be−

√
−λL = 0. Thus we have a homogeneous system of two equations and

two unknowns. In matrix form, this is(
1 −1

e
√
−λL −e−

√
−λL

)(
A

B

)
=

(
0

0

)
.

The determinant of the above matrix is e
√
−λL− e−

√
−λL, which is nonzero. Therefore

the matrix is nonsingular, and the homogeneous system of equations has exactly one
solution: the trivial solution. Therefore A = B = 0, making y = 0 the only solution
to the boundary value problem.
Case B (λ = 0):
In this case,

√
−λ is 0, so the general solution is

y = A+Bx.
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We note that
y′ = B

Then since y′(0) = 0, we have B = 0. Furthermore, since y′(L) = 0 we have B = 0,
again. Thus y = A is a solution for any value of A. Case C (λ > 0):
In this case,

√
−λ = i

√
λ is imaginary, so the general solution is

y = A cos(
√
λx) +B sin(

√
λx).

We note that
y′ =

√
λx(B cos(

√
λx)− A sin(

√
λx)).

Then since y′(0) = 0, we have B = 0, making y = A cos(
√
λx). Then since y′(L) = 0,

we have that A = 0 or sin(
√
λL) = 0. In the former case, y = 0. In the latter

case,
√
λL = nπ for some integer n and therefore λ = n2π2/L2. In this case y =

A cos(
√
λx) = A cos(nπx/L) is a solution for any value of B.

SUMMARY:
The boundary value problem has at least one solution for every value of λ: the trivial
solution. The boundary value problem has more than the trivial solution exactly when
λ = 0 or λ = n2π2/L2 for some nonzero integer n. If λ = 0, then anything of the form
y = A is a solution. If λ = n2π2/L2, then anything of the form y = A cos(nπx/L) is
a solution.

Problem 4 Fourier Series

For each of the following functions, sketch a graph of the function and find the Fourier
series

(a) f(x) = sin3(x) + cos2(2x+ 3)

(b) f(x) = −x, −L ≤ x < L with f(x+ 2L) = f(x) for all x

(c) f(x) =

{
x+ 1, −π ≤ x < 0
1− x, 0 ≤ x < π

with f(x+ 2π) = f(x) for all x

. . . . . . . . .

Solution 4. We will omit the sketches, as we assume that students are able to figure
that part out.

(a) The idea of this first problem is to use a little bit of trigonometry to write f(x)
as a finite sum of sines and cosines. This is easier here than trying to apply
the Euler-Fourier formula directly. The triggy-tricks that we will use are the
following:

sin2(θ) + cos2(θ) = 1.

cos2(θ) =
1

2
+

1

2
cos(2θ).
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sin(θ + φ) = sin(θ) cos(φ)− cos(θ) sin(φ).

cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ).

sin(θ) cos(φ) =
1

2
(sin(θ + φ) + sin(θ − φ)) .

For starters:

cos2(2x+ 3) = (1/2) + (1/2) cos(4x+ 6)

= (1/2) + (1/2)[cos(4x) cos(6)− sin(4x) sin(6)]

= (1/2) +
1

2
cos(6) cos(4x)− 1

2
sin(6) sin(4x).

Moreover:

sin3(x) = (1− cos2(x)) sin(x)

= ((1/2)− (1/2) cos(2x)) sin(x)

= (1/2) sin(x)− (1/2) cos(2x) sin(x)

= (1/2) sin(x)− (1/4)(sin(3x)− sin(x))

=
3

4
sin(x)− 1

4
sin(3x).

Therefore we have that a0 = 1, b1 = 3/4, b3 = 1/4, a4 = cos(6)/2, b4 = sin(6)/2
and ai, bj are zero otherwise. In other words

f(x) = (1/2) +
3

4
sin(x)− 1

4
sin(3x) +

1

2
cos(6) cos(4x)− 1

2
sin(6) sin(4x).

(b) The second function is a “sawtooth” wave. Note that f(x) is odd, forcing an = 0
for all n. Therefore we need only worry about the bn’s. For these, we apply the
Euler-Fourier formula:

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

=
1

L

∫ L

−L
−x sin

(nπx
L

)
dx

=
1

nπ
x cos

(nπx
L

)
|L−L −

1

nπ

∫ L

−L
cos
(nπx
L

)
dx

=
2L

nπ
cos(nπ)− 1

nπ

∫ L

−L
cos
(nπx
L

)
dx

=
2L

nπ
cos(nπ)− 1

nπ

∫ L

−L
cos
(nπx
L

)
dx

=
2L

nπ
cos(nπ)− L

n2π2
sin
(nπx
L

)
|L−L =

2L

nπ
cos(nπ).

Then since cos(nπ) = (−1)n, we see that

f(x) =
∞∑
n=1

2L(−1)n

nπ
sin
(nπx
L

)
.
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(c) The third function is a “triangular wave”. Note that f(x) is even, forcing bn = 0
for all n. Therefore we need only worry about the an’s. For these, we apply the
Euler-Fourier formula:

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

=
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx

=
2

π

∫ π

0

(1− x) cos(nx)dx

=
2

nπ
(1− x) sin(nx)|π0 +

2

nπ

∫ π

0

sin(nx)dx

=
2

nπ

∫ π

0

sin(nx)dx = − 2

n2π
cos(nx)|π0

= − 2

n2π
(cos(nπ)− 1) = − 2

n2π
((−1)n − 1).

In particular, an = 0 when n is even. Note that in the above calculation, we used
the fact that n 6= 0. We need to do the case n = 0 separately:

a0 =
1

L

∫ L

−L
f(x) cos(0πx/L)dx =

1

π

∫ π

−π
f(x)dx = −(π − 2).

Putting this all together we have

f(x) =
a0
2

+
∞∑
n=1

an cos(nx)

=
a0
2

+
∞∑
n=1

a2n−1 cos((2n− 1)x)

=
2− π

2
+
∞∑
n=1

4

π(2n− 1)2
cos((2n− 1)x)

Problem 5 Parseval’s Identity

Let f(x) be a periodic function with fundamental period 2L, and suppose that

f(x) =
a0
2

+
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
Using the fact that{

1

2
, cos

(nπx
L

)
, sin

(mπx
L

)
: n = 0, 1, 2, . . . ,m = 1, 2, 3, . . .

}
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is a mutually orthogonal set of functions, prove Parseval’s identity:

1

L

∫ L

−L
f(x)2dx =

a20
2

+
∞∑
n=1

(a2n + b2n).

. . . . . . . . .

Solution 5. This problem is easier to understand if we use the inner product notation

〈g(x), h(x)〉 =

∫ L

−L
g(x), h(x)dx.

Then using the linearity of the inner product, we have that∫ L

−L
f(x)2dx = 〈f, f〉

=

〈
f(x),

a0
2

+
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]〉

= a0

〈
f(x),

1

2

〉
+
∞∑
n=1

an

〈
f(x), cos

(nπx
L

)〉
+
∞∑
n=1

bn

〈
f(x), sin

(nπx
L

)〉
.

For fixed n, we calculate using orthogonality:〈
f(x), cos

(nπx
L

)〉
=

〈
a0
2

+

∞∑
m=1

[
am cos

(mπx
L

)
+ bm sin

(mπx
L

)]
, cos

(nπx
L

)〉

=
〈a0
2
, cos

(nπx
L

)〉
+

∞∑
m=1

am

〈
cos
(mπx

L

)
, cos

(nπx
L

)〉
+

∞∑
m=1

bm

〈
sin
(mπx

L

)
, cos

(nπx
L

)〉
= am

〈
cos
(nπx
L

)
, cos

(nπx
L

)〉
= amL.

A similar calculation also shows〈
f(x), sin

(nπx
L

)〉
= bnL.

and that 〈
f(x),

1

2

〉
=

1

2
a0L.

Therefore we see that∫ L

−L
f(x)2dx

= a0

〈
f(x),

1

2

〉
+
∞∑
n=1

an

〈
f(x), cos

(nπx
L

)〉
+
∞∑
n=1

bn

〈
f(x), sin

(nπx
L

)〉
= a0(a0L/2) +

∞∑
n=1

an(anL) +
∞∑
n=1

bn(bnL) =
1

2
a20L+

∞∑
n=1

(
a2nL+ b2nL

)
Dividing now by L gives us Parseval’s identity.
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Problem 6 Parseval’s Identity Application

Use Parseval’s identity and the Fourier series for the square wave function

f(x) =

{
0, −1 ≤ x < 0
1, 0 ≤ x < 1

, with f(x+ 2) = f(x) for all x

to obtain the value of the infinite sum
∞∑
n=0

1

(2n+ 1)2

. . . . . . . . .

Solution 6. We first calculate the Fourier series for the square wave function above
using the Euler-Fourier formula. We calculate

an =

∫ 1

−1
f(x) cos(nπx) =

∫ 1

0

cos(nπx) =
1

nπ
sin(nπx)|10 = 0.

The above calculation does not work when n = 0 however (since we divided by n).
We have to do this separately:

a0 =

∫ 1

−1
f(x)dx = 1.

We also calculate the bn’s:

bn =

∫ 1

−1
f(x) sin(nπx) =

∫ 1

0

sin(nπx) = − 1

nπ
cos(nπx)|10 = − 1

nπ
((−1)n − 1).

This last expression is 0 if n is even and 1 if n is odd. Therefore we have that

f(x) =
a0
2

+
∞∑
n=1

bn sin(nπx) =
a0
2

+
∞∑
n=1

b2n−1 sin(nπx)

=
1

2
+
∞∑
n=1

2

(2n− 1)π
sin(nπx).

Then since
1

1

∫ 1

−1
f(x)2dx = 1,

Parseval’s identity tells us that

1 =
1

2
+
∞∑
n=1

4

(2n− 1)2π2
.

Simplifying this a bit, it says

1

2
=

4

π2

∞∑
n=1

1

(2n− 1)2
,
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and therefore
∞∑
n=1

1

(2n− 1)2
=
π2

8
.

Note that the sum on the left is exactly the sum that we were trying to calculate,
just indexed a bit differently. In fact if we reindex by setting m = n − 1, then the
above expression becomes

∞∑
m=0

1

(2m+ 1)2
=
π2

8
.
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