
MATH 309: Homework #4

Due on: November 20, 2015

Problem 1 Even and Odd Functions

Prove that any function f(x) may be expressed as a sum of two functions f(x) =
g(x) + h(x) with g(x) even and h(x) odd. [Hint: consider f(x) + f(−x)].

. . . . . . . . .

Solution 1. In order to prove the statement we want, we need to show that for
any function f(x), there exists an even function g(x) and an odd function h(x) with
f(x) = g(x) + h(x). In particular, we need to come up with equations for g(x) and
h(x) in terms of f(x). How can we do this? One way is to assume that g(x) and h(x)
are known to exist, and then fiddle around with f(x) to figure out the equations. In
particular if g(x) is even and h(x) is odd and f(x) = g(x) + h(x) then

f(−x) = g(−x) + h(−x) = g(x)− h(x).

It follows that

f(x) + f(−x) = g(x) + h(x) + (g(x)− h(x)) = 2g(x),

and therefore we should take g(x) = (f(x) + f(−x))/2. Similarly, we have that

f(x)− f(−x) = g(x) + h(x)− (g(x)− h(x)) = 2h(x),

and therfore we should take h(x) = (f(x)− f(−x))/2. Great!
What we did above is just a bunch of scratch work. Here’s our actual proof:

Suppose that f(x) is a function. Define g(x) = (f(x) + f(−x))/2 and h(x) = (f(x)−
f(−x))/2. Then since

g(−x) = (f(−x) + f(−− x))/2 = (f(−x) + f(x))/2 = (f(x) + f(−x))/2 = g(x)

we have that g(x) is even. Similarly

h(−x) = (f(−x)− f(−− x))/2 = (f(−x)− f(x))/2 = −(f(x)− f(−x))/2 = −h(x)

and therefore h(x) is odd. Furthermore

g(x) + h(x) = (f(x) + f(−x))/2 + (f(x)− f(−x))/2 = f(x).

Therefore f(x) = g(x) +h(x) is a sum of an even function and an odd function. This
completes our proof.



Problem 3 2

Problem 2 Even and Odd Functions

Prove that the derivative of an even function is odd and that the derivative of an odd
function is even.

. . . . . . . . .

Solution 2. There are many great ways to prove this fact. We will use one of the
simplest methods: the chain rule. Let g(x) = f(−x). Then by the chain rule

g′(x) = −f ′(−x).

Now let’s suppose f(x) is an even function. Then in this case g(x) = f(x), making
g′(x) = f ′(x), so that the above expression reads f ′(x) = −f ′(−x). Since x was
arbitrary, this shows that f ′(x) is odd when f(x) is even. Alternatively, let’s suppose
that f(x) is an odd function. Then g(x) = −f(x), making g′(x) = −f ′(x), so that
the expression we derived from the chain rule reads −f ′(x) = −f ′(−x), and hence
f ′(x) = f ′(−x). Since x was arbitrary, this shows that f ′(x) is even when f(x) is
odd. This completes our proof.

Problem 3 Sine Series

Consider the function

f(x) =


0, 0 < x < π
1, π < x < 2π
2, 2π < x < 3π

(a) Scketch a graph of f(x)

(b) By reflecting f appropriately, express f as a sine series.

(c) Plot three different partial sums of the sine series, clearly indicating the partial
sums being plotted.

(d) Sketch a graph of the function to which the sine series converges for three periods.

. . . . . . . . .

Solution 3.
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(b) To express f(x) as a sine series, we create a new function g(x) which is odd and
periodic by reflecting f(x) oddly accross the y-axis, and then defining g(x+6π) =
g(x) for all x. Since g(x) is periodic, it has a Fourier series, and since g(x) is odd,
all of the cosine terms will be gone, leaving just the sine terms. We can calculate
the associated coefficients by using the Euler-Fourier formula:

bn =
1

3π

∫ 3π

−3π
g(x) sin(nπx/(3π))dx.

Now since g(x) is odd, the integrand is even, so we can simply integrate from 0 to
3π and multiply by 2 to get the value of bn. Moreover, from 0 to 3π the function
g(x) agrees with f(x), and therefore

bn =
2

3π

∫ 3π

0

f(x) sin(nx/3)dx.

Now in order to do this intergral, we need to break it up into the three separate
intervals where f(x) is individually defined:

bn =
2

3π

(∫ π

0

0 sin(nx/3) +

∫ 2π

π

1 sin(nx/3)dx+

∫ 3π

2π

3 sin(nx/3)dx

)
.

The integrals themselves are pretty easy. Evaluating them, we obtain:

bn =
2

3π

(
0 +
−3

n
(cos(2nπ/3)− cos(nπ/3))dx+

−9

n
(cos(3nπ/3)− cos(2nπ/3))

)
.

Now we want to use the fact that

cos(mπ/3) =


1/2, m = ±1 + 6k
−1/2, m = ±2 + 6k

1, m = 0 + 6k
−1, m = 3 + 6k
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Using this, the expression for bn reduces to

bn =


5/(nπ), n = ±1 + 6k
−9/(nπ), n = ±2 + 6k

0, n = 0 + 6k
8/(nπ), n = 3 + 6k

Using these values of bn, we have

f(x) =
∞∑
n=1

bn sin(nx/3).

(c)
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Problem 4 Cosine Series

Consider the function

f(x) =

{
x, 0 < x < π
0, π < x < 2π

(a) Scketch a graph of f(x)

(b) By reflecting f appropriately, express f as a cosine series.

(c) Plot three different partial sums of the cosine series, clearly indicating the partial
sums being plotted.

(d) Sketch a graph of the function to which the cosine series converges for three
periods.

. . . . . . . . .

Solution 4.

(a)
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(b) To express f(x) as a cosine series, we create a new function g(x) which is even and
periodic by reflecting f(x) evenly accross the y-axis, and then defining g(x+4π) =
g(x) for all x. Since g(x) is periodic, it has a Fourier series, and since g(x) is
even, all of the sine terms will be gone, leaving just the cosine terms. We can
calculate the associated coefficients by using the Euler-Fourier formula:

an =
1

2π

∫ 2π

−2π
g(x) cos(nπx/(2π))dx.

Now since g(x) is odd, the integrand is even, so we can simply integrate from 0 to
2π and multiply by 2 to get the value of an. Moreover, from 0 to 2π the function
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g(x) agrees with f(x), and therefore

an =
1

π

∫ 2π

0

f(x) cos(nx/2)dx.

Now in order to do this intergral, we need to break it up into the two separate
intervals where f(x) is individually defined:

an =
1

π

(∫ π

0

x cos(nx/2) +

∫ 2π

π

0 cos(nx/2)dx

)
.

To evaluate this integral, we use integration by parts, obtaining:

an =
−2

n
cos(nπ/2) =

{
((−1)n/2 − 1)4/(n2π) n even

(−1)(n+1)/22/n− 4/(n2π) n odd

This expression does not work however for n = 0 since in the calculation we
divided by n. We must do this separately:

a0 =
1

π

∫ 2π

0

f(x)dx =
1

π

∫ π

0

xdx =
1

2
π.

Using these values of an, we have

f(x) =
a0
2

+
∞∑
n=1

an cos(nπx/3).

(c)
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(d)
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Problem 5 Heat Equation 1

Find the solution of the heat conduction problem

100uxx = ut, 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = sin(2πx)− sin(5πx)

. . . . . . . . .

Solution 5. We identify α2 = 100 and L = 1. Then we need to expand u(x, 0) as

u(x, 0) =
∞∑
n=1

bn sin(nπx).

However, if we look at the form of u(x, 0), this is immediately accomplished by taking
b2 = 1, b5 = −1 and bn = 0 otherwise. Therefore

u(x, t) = u2(x, t)− u5(x, t) = e−400π
2t sin(2πx)− e−2500π2t sin(5πx).

Problem 6 Heat Equation 2

Find the solution of the heat conduction problem

uxx = 4ut, 0 < x < 2, t > 0

u(0, t) = u(2, t) = 0, t > 0

u(x, 0) = 2 sin(πx/2)− sin(πx) + 4 sin(2πx)

. . . . . . . . .
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Solution 6. We identify α2 = 4 and L = 2. Then we need to expand u(x, 0) as

u(x, 0) =
∞∑
n=1

bn sin(nπx/2).

However, if we look at the form of u(x, 0), this is immediately accomplished by taking
b1 = 2, b2 = −1, b4 = 4 and bn = 0 otherwise. Therefore

u(x, t) = u1(x, t)−u2(x, t)+4u4(x, t) = e−π
2t sin(πx/2)−e−4π2t sin(πx)+4e−16π

2t sin(2πx).

Problem 7 Schrödinger Equation

In quantum mechanics, the position of a point particle in space is not certain – it’s
described by a probability distribution. The probability distribution of the position of
the particle is |ψ(x, t)|2, where ψ(x, t) is the wave function of the particle. (Note: the
wave function ψ(x, t) can be complex-valued!!). The one-dimensional, time-dependent
Schrödinger equation, describing the wave function ψ(x, t) of a particle of mass m
interacting with a potential v(x) is given by

i~ψt(x, t) = − ~2

2m
ψxx(x, t) + v(x)ψ(x, t)

where ~ is some universal constant. The potential v(x) can be imagined as a function
describing the particles interaction with whatever “stuff” is in the space surrounding
the particle, eg. walls, external forces, etc.

(a) Use separation of variables to replace this partial differential equation with a pair
of two ordinary differential equations

(b) If v(x) is a potential corresponding to an “infinite square well”:

v(x) =

{
0, −1 < x < 1
∞, |x| ≥ 1

Then ψ(x, t) must be zero whenever |x| ≥ 1 and therefore ψ(x, t) is the wave
function of a particle trapped in a one-dimensional box! In other words, this
potential describes a particle surrounded by impermeable walls. In this case,
Schrödinger’s equation reduces to

i~ψt(x, t) = − ~2

2m
ψxx(x, t), −1 < x < 1, t > 0

ψ(−1, t) = ψ(1, t) = 0, t > 0

Suppose that initially the wave function is known to be

ψ(x, 0) =
3

5
sin(πx) +

4

5
sin(3πx).

Determine ψ(x, t) for all t > 0.
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(c) Since |ψ(x, t)|2 is the probability distribution of the particle’s position at time t,
the probability that the particle is somewhere in the box between `1 and `2 is
given by

P(`1 ≤ pos ≤ `2) =

∫ `2

`1

|ψ(x, t)|2dx.

Show that the probability P(−1 ≤ pos ≤ 1) that the particle is between −1 and
1 is always 1 (in other words, the particle is always in the box!).

(d) What is the probability P(−1 ≤ pos ≤ 0) that the particle is in the first half of
the box at any given time?

. . . . . . . . .

Solution 7.

(a) We assume ψ(x, t) = F (x)G(t). Then inserting this into Schrödinger’s equation,
we obtain

i~F (x)G′(t) = − ~2

2m
F ′′(x)G(t) + v(x)F (x)G(t).

Now if we divide out by a G(t) and a F (x) we find

i~G′(t)/G(t) = − ~2

2m
F ′′(x)/F (x) + v(x).

The function on the left hand side is a function of t only. The function on the
right hand side is a function of x only. Therefore the only way that the above
equality can work is if both sides are equal to some constant E. Therefore

i~G′(t)/G(t) = E, − ~2

2m
F ′′(x)/F (x) + v(x) = E.

Simplifying, this gives us the system of two ordinary differential equations

i~G′(t) = EG(t).

− ~2

2m
F ′′(x) + v(x)F (x) = EF (x).

The latter equation of these two equations is known as the time-independent
Schrödinger equation.

(b) This is just like the heat equation, with α2 = i ~
2m

and L = 1. Thus given the
initial condition, the solution that we are looking for is

ψ(x, t) =
3

5
e−i

~π2
2m

t sin(πx) +
4

5
e−i

9~π2
2m

t sin(3πx).
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(c) Note that

ψ(x, t)∗ =
3

5
ei

~π2
2m

t sin(πx) +
4

5
ei

9~π2
2m

t sin(3πx),

and therefore

|ψ(x, t)|2 = ψ(x, t)ψ(x, t)∗ =
9

25
sin2(πx)+

16

25
sin2(3πx)+

12

25

(
ei

8~π2
2m

t + ei
−8~π2
2m

t
)

sin(πx) sin(3πx).

If we now integrate over the domain of the box (from −1 to 1), orthogonality tells
us the integral of sin(πx) sin(3πx) dies off! Therefore we obtain:∫ 1

−1
|ψ(x, t)|2dx =

9

25

∫ 1

−1
sin2(πx)dx+

16

25

∫ 1

−1
sin2(3πx)dx =

9

25
+

16

25
= 1.

This shows that the probability that the particle is in the box at any time t is 1
– e.g. it is a certainty.

(d) We can use the work from above to write∫ 1

−1
|ψ(x, t)2dx =

9

25

∫ 0

−1
sin2(πx)dx+

16

25

∫ 0

−1
sin2(3πx)dx+

12

25

(
ei

8~π2
2m

t + ei
−8~π2
2m

t
)∫ 0

−1
sin(πx) sin(3πx)dx.

However, since we’re not integrating over the full period, we cannot appeal to or-
thogonality to say that the cross-term dies anymore. However, direct calculation
shows that it does indeed die anyway. The sum of the first two integrals is easily
calculated to be 1/2. Therefore the probability that the particle is in the first
half of the box at any time t is exactly 1/2. In other words – at any time the
particle is equally likely to be in either side of the box.
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