
MATH 309: Homework #5

Due on: November 30, 2015

Problem 1 Insulated Heat Equation Problem

Consider a uniform rod of length L with an initial temperature given by u(x, 0) =
sin(πx/L) with 0 ≤ x ≤ L. Assume that both ends of the bar are insulated (this is a
homogeneous von Neumann boundary condition for t > 0).

(a) Find the temperature u(x, t). (Note: the initial condition u(x, 0) does not satisfy
the boundary conditions, which is fine since we are only asking the boundary
conditions to be satisfied for t > 0)

(b) What is the steady state temperature as t→∞?

(c) Let α2 = 1 and L = 40. Plot u vs. x for several values of t.

. . . . . . . . .

Solution 1.

(a) We need to determine the temperature initially in terms of a cosine series. This
means reflecting sin(πx/L) evenly and then extending periodically. In other
words, we’re really looking for the cosine series of | sin(πx/L))|. Using Euler-
Fourier, we obtain

an =
1

L

∫ L

−L
| sin(πx/L)| cos(nπx/L)dx =

2

L

∫ L

0

sin(πx/L) cos(nπx/L)dx.

Now in order to complete the last integral on the right, we can adopt several
strategies. The most obvious thing is to integrate by parts twice, and then com-
pare sides – however, that is a lot of work. A shorter strategy is to use the
addition angle formulas for sine to write:

sin(πx/L) cos(nπx/L) =
1

2
(sin((1 + n)πx/L) + sin((1− n)πx/L)).

With this in mind, the above integral becomes

an =
1

L

∫ L

0

(sin((1 + n)πx/L) + sin((1− n)πx/L))dx =
2

π

(
1 + (−1)n

1− n2

)
.
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However, notice that in our derivation of this formula, we divided by 1− n, and
therefore the expression we obtained for an does not apply when n = 1. We must
treat this case separately! We calculate using the double angle formula

a1 =
2

L

∫ L

0

sin(πx/L) cos(πx/L)dx =
1

L

∫ L

0

sin(2πx/L)dx = − 1

2π
cos(2πx/L)|10 = 0.

We conclude that

u(x, 0) =
a0
2

+
∞∑
n=1

an cos(nπx/L) =
2

π
+
∞∑
n=2

2

π

(
1 + (−1)n

1− n2

)
cos(nπx/L).

This tells us that

u(x, t) =
2

π
+
∞∑
n=2

2

π

(
1 + (−1)n

1− n2

)
e−n

2π2α2t/L2

cos(nπx/L).

(b) As t→∞, the exponential terms die off, leaving only a0/2. Therefore the steady
state temperature is 2/π.

(c) Plot at several times is included in the figure below.
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Problem 2 Another Insulated Heat Equation Problem

Consider a bar of length 40 cm whose initial temperatore is given by u(x, 0) = x(60−
x)/30. Suppose that α2 = 1/4 cm2/s and that both ends of the bar are insulated.

(a) Find the temperature u(x, t). (Note: the initial condition u(x, 0) does not satisfy
the boundary conditions, which is fine since we are only asking the boundary
conditions to be satisfied for t > 0)

(b) What is the steady state temperature as t→∞?

(c) Plot u vs. x for several values of t.

(d) Determine how much time must elapse before the temperature at x = 40 comes
within 1 degrees C of its steady state value.

. . . . . . . . .

Solution 2.

(a) Again, we must extend u(x, 0) evenly and periodically in order to pick up its
cosine series. Then by the Euler-Fourier equation we have

an =
2

40

∫ 40

0

x(60− x)

30
cos(nπx/40)dx.

We can obtain the value explicitly by using integration by parts twice to get the
a′ns. (There are, of course, more clever ways to do things, but this works fine).
Doing so, we obtain

an =
160

3

(−1)n+1 − 3

n2π2
,

which works except for n = 0, for which we obtain a0 = 400/9. Therefore we see

u(x, 0) = 200/9 +
∞∑
n=1

160

3

(−1)n+1 − 3

n2π2
cos(nπx/40).

We conclude that

u(x, t) = 200/9 +
∞∑
n=1

160

3

(−1)n+1 − 3

n2π2
e−n

2π2t/6400 cos(nπx/40).

(b) Again, the exponential terms die off, so the steady state temperature is 200/9.

(c) Plot at several times is included in the figure below.
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Problem 3 Nonhomogeneous Boundary Conditions

Let an aluminum rod of length 20 cm be initially at the uniform temperature of 25
degrees C. Suppose that at time t = 0, the end x = 0 is cooled to 0 degrees C while
the other end x = 20 is heated to 60 degrees C, and both are thereafter maintained
at those temperatures.

(a) Find the temperature u(x, t). (Note: the initial condition u(x, 0) does not satisfy
the boundary conditions, which is fine since we are only asking the boundary
conditions to be satisfied for t > 0)

(b) What is the steady state temperature as t→∞?

(c) Plot u vs. x for several values of t.

(d) Determine how much time must elapse before the temperature at x = 5 comes
within 1 degrees C of its steady state value.

. . . . . . . . .

Solution 3.
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(a) We have Dirichlet boundary conditions, so this means that we should be thinking
about a sine expansion. The first thing we should do is obtain the steady state
solution usteady(x). Note that it is not time dependent (since it’s steady state!!).
Since it satisfies the heat equation, we know that u′′steady(x) = 0, and therefore
usteady(x) = ax + b for some constants a and b. Now since usteady(0) = 0 and
usteady(20) = 60, we can work out a and b, obtaining (a = 3, b = 0):

usteady(x) = 3x.

Next, we should solve for the transient solution, which has homogeneous Dirichlet
boundary conditions and initially satisfies utrans(x, 0) = 25−usteady(x) = 25−3x.
The sine expansion of this is given by

utrans(x, 0) =
∞∑
n=1

10

nπ
(5 + 7(−1)n) sin(nπx/20).

Then since α2 = 0.86 for aluminum, we find that the transient solution is:

utrans(x, t) =
∞∑
n=1

10

nπ
(5 + 7(−1)n)e−n

2π2(0.86)t/400 sin(nπx/20).

To get the solution to the inhomogeneous heat equation problem above, we need
to add this transient solution to the steady state solution usteady(x). Therefore

u = utrans(x, t)+usteady(x, t) = 3x+
∞∑
n=1

10

nπ
(5+7(−1)n)e−n

2π2(0.86)t/400 sin(nπx/20).

(b) As t → ∞, the transient solution dies off, leaving behind only the steady state
solution usteady = 3x.

(c) Plot at several times is included in the figure below.
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(d) We are really asking how much time elapses until |utrans(5, t)| ≤ 1. We can
determine this by plotting utrans(5, t) and determining what time it drops below
1 degree Celsius. A graph of the transient temperature is included below:
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From the graph, we approximate t = 18.18 is about when u(5, t) is within its
steady state value.

Problem 4 The Heat Equation in Two Dimensions

We consider the two dimensional heat equation

ut − α2(uxx + uyy) = 0.

(a) Assume that u is of the form u(x, y, t) = F (x)G(y)T (t), and show that the heat
equation reduces to the system of three ordinary differential equations

T ′(t) + λT = 0

F ′′(x) + λ−µ
α2 F (x) = 0

G′′(y) + µ
α2G(y) = 0

for some constants λ and µ.

(b) Assume that u(x, y, t) = F (x)G(y)T (t) satisfies the heat equation above in the
rectangular region [0, L]× [0,M ] and also satisfies the Dirichlet boundary condi-
tions

u(0, y, t) = 0, u(L, y, t) = 0, u(x, 0, t) = 0, u(x,M, t) = 0.

Find all possible functions u(x, y, t) satisfying the above conditions. [Hint: they
should be indexed by pairs of positive integers (m,n)]
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(c) Use (b) to find a solution to the two dimensional heat equation with Dirichlet
boundary conditions

ut − (uxx + uyy) = 0,

u(0, y, t) = 0, u(1, y, t) = 0, u(x, 0, t) = 0, u(x, 1, t) = 0,

with the initial condition that

u(x, y, 0) = sin(3πx) sin(2πy) + sin(2πx) sin(4πy).

Create a surface plots of your solution for several values of t.

. . . . . . . . .

Solution 4.

(a) Pluggin u(x, y, t) = F (x)G(y)T (t) into the two dimensional heat equation, we
obtain

F (x)G(y)T ′(t) = α2(F ′′(x)G(y)T (t) + F (x)G′′(y)T (t)).

Then dividing on both sides by F (x)G(y)T (t), we obtain:

T ′(t)/T (t) = α2(F ′′(x)/F (x) +G′′(y)/G(y)).

The expression on the left hand side is a function of t only, while the expression
on the right hand side is independent of t. Therefore both must be equal to a
constant −λ:

T ′(t)/T (t) = α2(F ′′(x)/F (x) +G′′(y)/G(y)) = −λ.

Simplifying this, we get
T ′(t)/T (t) = −λ

α2F ′′(x)/F (x) + α2G′′(y)/G(y) = −λ.

Therefore
α2F ′′(x)/F (x) = −α2G′′(y)/G(y)− λ.

Again the expression on the left hand side is a function of x only, and on the
right we have a function of y only, and therefore both are equal to a constant µ:

α2F ′′(x)/F (x) + λ = −α2G′′(y)/G(y) = µ.

It follows that
α2F ′′(x)/F (x) = µ− λ

−α2G′′(y)/G(y) = −µ.

Simplyfying things further we obtain the system of three ordinary differential
equations listed in (a) above.
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(b) The Dirichlet boundary conditions result in boundary conditions on our various
ODE’s. In particular

F ′′(x) +
λ− µ
α2

F (x) = 0, F (0) = 0, F (L) = 0

and also
G′′(y) +

µ

α2
G(y) = 0, G(0) = 0, G(M) = 0.

Then from our experience with boundary value problems, to get a nontrivial
solution this says that µ = n2π2α2/M2 and that λ − µ = m2π2α2/L2 for some
integers m and n, and in this case the solutions we obtain are

F (x) = A sin(mπx/L), G(x) = B sin(nπy/M)

for some constants A and B. Then λ = m2π2α2/L2 + n2π2α2/M2, and therefore

T = C exp

(
m2π2α2

L2
t+

n2π2α2

M2
t

)
.

Thus we obtain the solution

u(x, y, t) = F (x)G(y)T (t) = ABC exp

(
m2π2α2

L2
t+

n2π2α2

M2
t

)
sin(mπx/L) sin(nπx/M).

This motivates us to set

umn(x, y, t) = exp

(
m2π2α2

L2
t+

n2π2α2

M2
t

)
sin(mπx/L) sin(nπx/M).

Then by the superposition principle, any solution of the form

u(x, y, t) =
∞∑
m=1

∞∑
n=1

amnumn(x, y, t)

is a solution, for constants amn. In fact, all solutions may be written this way!

(c) From part (b), we know to try to write

u(x, y, t) =
∞∑
m=1

∞∑
n=1

amnumn(x, t)

for some constants amn, where here α2 = 1, L = 1,M = 1. we must choose the
constants so that

u(x, y, 0) =
∞∑
m=1

∞∑
n=1

amnumn(x, y, 0) =
∞∑
m=1

∞∑
n=1

amn sin(mπx) sin(nπx).

is equal to our initial condition. Looking at initial condition, this is easy! Just
choose a32 = 1, a24 = 1 and amn = 0 otherwise. Thus:

u(x, y, t) = u32(x, y, t)+u24(x, y, t) = e−13π
2t sin(3πx) sin(2πy)+e−20π

2t sin(2πx) sin(4πy).

Plots at various times are included below:
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Problem 5 The Heat Equation in Polar Coordinates

We consider the two dimensional heat equation

ut − α2(uxx + uyy) = 0.

(a) Show that using polar coordinates, (r, θ), the heat equation becomes

ut − α2

(
urr +

1

r
ur +

1

r2
uθθ

)
= 0.

(b) Assume that u is of the form u(r, θ, t) = R(r)S(θ)T (t), and show that the heat
equation reduces to the system of three ordinary differential equations

T ′(t) + λT = 0
r2R′′(r) + rR′(r) + 1

α2 (r2λ− µ)R = 0
S ′′(θ) + µ

α2S(θ) = 0

for some constants λ and µ.
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(c) Explain why µ = n2α2 for some integer n. [Hint: remember that θ is the angle
counter-clockwise from the x-axis].

(d) Find the general solution to the above system of equations in the case that λ = 0
and µ = α2. [Hint: to solve for R(r), propose a solution of the form R(r) = rb]

. . . . . . . . .

Solution 5.

(a) Note that r2 = x2 + y2 and tan(θ) = y/x and therefore

rx = cos(θ), ry = sin(θ),

as well as

θx =
− sin(θ)

r
, θy =

cos(θ)

r
,

Then from the chain rule we have

∂

∂x
= rx

∂

∂r
+ θx

∂

∂θ
= cos(θ)

∂

∂r
− 1

r
sin(θ)

∂

∂θ

∂

∂y
= ry

∂

∂r
+ θy

∂

∂θ
= sin(θ)

∂

∂r
+

1

r
cos(θ)

∂

∂θ

Then we have that

∂2

∂x2
=

(
∂

∂x

)2

=

[
cos(θ)

∂

∂r
+
−1

r
sin(θ)

∂

∂θ

]2
=

[
cos(θ)

∂

∂r

]2
+

[
cos(θ)

∂

∂r

] [
−1

r
sin(θ)

∂

∂θ

]
+

[
−1

r
sin(θ)

∂

∂θ

] [
cos(θ)

∂

∂r

]
+

[
−1

r
sin(θ)

∂

∂θ

]2
and also [

cos(θ)
∂

∂r

]2
= cos2(θ)

∂2

∂r2
.[

cos(θ)
∂

∂r

] [
−1

r
sin(θ)

∂

∂θ

]
=
−1

r
sin(θ) cos(θ)

∂2

∂r∂θ
+

1

r2
sin(θ) cos(θ)

∂

∂θ[
−1

r
sin(θ)

∂

∂θ

] [
cos(θ)

∂

∂r

]
=
−1

r
sin(θ) cos(θ)

∂2

∂r∂θ
+

1

r
sin2(θ)

∂

∂r
.[

−1

r
sin(θ)

∂

∂θ

]2
=

1

r2
sin2(θ)

∂2

∂θ2
+

1

r2
sin(θ) cos(θ)

∂

∂θ
.
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Similarly,

∂2

∂y2
=

(
∂

∂y

)2

=

[
sin(θ)

∂

∂r
+

1

r
cos(θ)

∂

∂θ

]2
=

[
sin(θ)

∂

∂r

]2
+

[
sin(θ)

∂

∂r

] [
1

r
cos(θ)

∂

∂θ

]
+

[
1

r
cos(θ)

∂

∂θ

] [
sin(θ)

∂

∂r

]
+

[
1

r
cos(θ)

∂

∂θ

]2
and also [

sin(θ)
∂

∂r

]2
= sin2(θ)

∂2

∂r2
.[

sin(θ)
∂

∂r

] [
1

r
cos(θ)

∂

∂θ

]
=

1

r
sin(θ) cos(θ)

∂2

∂r∂θ
− 1

r2
sin(θ) cos(θ)

∂

∂θ
.[

1

r
cos(θ)

∂

∂θ

] [
sin(θ)

∂

∂r

]
=

1

r
sin(θ) cos(θ) +

1

r
cos2(θ)

∂

∂r
.[

1

r
cos(θ)

∂

∂θ

]2
=

1

r2
cos2(θ)

∂2

∂θ2
− 1

r2
sin(θ) cos(θ)

∂

∂θ
.

Adding all of this together, we obtain:

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

Applying this to the function u, we get

uxx + uyy = urr +
1

r
ur +

1

r2
uθθ.

Suubstiuting this into the heat equation leads to

ut − α2

(
urr +

1

r
ur +

1

r2
uθθ

)
= 0.

(b) Putting u(r, θ, t) = R(r)S(θ)T (t) into the above expression, we obtain:

R(r)S(θ)T ′(t) = α2(R′′(r)S(θ)T (t) +
1

r
R′(r)S(θ)T (t) +

1

r2
R(r)S ′′(θ)T (t)).

Dividing everything by R(r)S(s)T (t), we obtain

T ′(t)/T (t) = α2(R′′(r)/R(r) +
1

r
R′(r)/R(r) +

1

r2
S ′′(θ)/S(θ)).

The expression on the left hand side is a function of t only, while the right hand
side is a function of r and θ only, and therefore both are equal to an arbitrary
constant −λ. This leads to

T ′(t)/T (t) = −λ
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and also

α2(R′′(r)/R(r) +
1

r
R′(r)/R(r) +

1

r2
S ′′(θ)/S(θ)) = −λ.

Then after an algebraic manipulation,

α2r2R′′(r)/R(r)− α2rR′(r)/R(r)− r2λ = S ′′(θ)/S(θ).

Therefore again we have that both are equal to a constant −µ:

α2r2R′′(r)/R(r)− α2rR′(r)/R(r)− r2λ = −µ

and also
S ′′(θ)/S(θ) = −µ.

After some simplification, this reduces to the expression in (b) above.

(c) Since (r, θ) and (r, θ+2π) both refer to the same coordinate in polar coordinates,
the function S should satisfy S(θ) = S(θ + 2π). Moreover, we know that S
satisfies S ′′(θ) + (µ/α2)S(θ) = 0. Depending on the value of µ/α2, the solutions
to this are either exponentials, polynomials or trig. functions. Since we require
S to be periodic, we want them to be trig functions, and therefore we need µ/α2

to be positive. In this case, the general solution to the differential equation is

S(θ) = A cos(
√
µθ/α) +B sin(

√
µθ/α).

Now we need S to be 2π periodic, and therefore we need
√
µ/α = n for some

integer n. Therefore µ = n2α2.

(d) Since λ = 0, the solution for T is T = E for some constant E. Moreover, the
general solution for S is

S(θ) = A cos(θ) +B sin(θ)

Finally, we propose a solution R(r) = rb to the equation r2R′′(r)+rR′(r)−R(r) =
0, and therefore b(b − 1)rb−2rb + brb − rb = 0. This leads to b2 − 1 = 0, and
therefore b = ±1. Thus we obtain two solutions: r and r−1. The general solution
is therefore

R(r) = Cr +Dr−1

. Putting this all together, we obtain

u(r, θ, t) = R(r)S(θ)T (t) = (Cr +Dr−1)(A cos(θ) +B sin(θ))E.

Since A,B,C,D,E are all arbitrary constants, we can rewrite this as:

u(r, θ, t) = C1r cos(θ) + C2r sin(θ) + C3r
−1 cos(θ) + C4r

−1 sin(θ).
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