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The First Example

Question
Consider the function

f (x) = ex , −L < x < L, with f (x + 2L) = f (x) for all x

What is its Fourier series?

the fundamental period of the function is 2L
we use the Euler-Cauchy formulas to determine its Fourier
series
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Fourier Coefficients

an =
1
L

∫ L

−L
f (x) cos

(nπx
L

)
dx

=
1
L

∫ L

−L
ex cos

(nπx
L

)
dx

=
1
L
(eL − e−L)

(−1)n

1 + (nπ/L)2

bn =
1
L

∫ L

−L
f (x) sin

(nπx
L

)
dx

=
1
L

∫ L

−L
ex sin

(nπx
L

)
dx

=
−1
L

(eL − e−L)
(−1)n(nπ/L)
1 + (nπ/L)2
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The Second Example

Question
Consider the function

f (x) = 1− |x |, −1 < x < 1, with f (x + 2) = f (x) for all x

What is its Fourier series?

the fundamental period of the function is 2
f (x) is even around 0, so bn = 0 for all n
we use the Euler-Cauchy formulas to determine an
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Fourier Coefficients

an =

∫ 1

−1
f (x) cos(nπx)dx

= 2
∫ 1

0
f (x) cos(πnx)dx , (since f (x) is even)

= 2
∫ 1

0
(1− x) cos(πnx)dx

=
2
πn

∫ 1

0
sin(πnx)dx , (integration by parts)

= − 2
π2n2 ((−1)n − 1) =

{
4/(π2n2), n odd

0, n even
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Fourier Series

this works unless n = 0, for which we calculate a0 = 1
the Fourier series for f (x) is therefore

f (x) =
1
2
+
∞∑

n=0

4
π2(2n + 1)2 cos(π(2n + 1)x).
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Piecewise Continuous Functions

Convergence of a Series

Question
Suppose that f (x) is a periodic function, and that am and bm
are the coefficients given by the Euler-Fourier formulas. When
does the Fourier series

a0

2
+
∞∑

m=0

[
am cos

(mπx
L

)
+ bm sin

(mπx
L

)]
converge to the function f (x).

this is a big question – with many different answers
could spend all quarter thinking about just this
with any question about convergence, always ask to what
and in what sense
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Pointwise Convergence

in this class, by convergence, we will mean pointwise
convergence, ie. we are asking for which fixed values of x
the infinite sum

a0

2
+
∞∑

m=0

[
am cos

(mπx
L

)
+ bm sin

(mπx
L

)]
is equal to f (x).
for an arbitrary function, this is a complicated question
we will focus instead on functions which are nice enough to
give us a nice answer
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Piecewise Continuous Functions

Convergence Theorem

let f (x) be a function, and let f (a−) and f (a+) denote the
limit of f (x) as x approaches a from the left or right,
respectively.
recall that a function is piecewise-continuous in a closed
interval [a,b] if for all values of x the limits f (x−) and f (x+)
exist and are finite, and that f (x−) and f (x+) differ at only
finitely many values of x in [a,b]

Theorem
Suppose that f (x) is periodic with fundamental period 2L, and
that f (x) and f ′(x) are piecewise-continuous in −L ≤ x < L.
Then the Fourier series of f (x) converges pointwise to
(f (x+) + f (x−))/2.
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Piecewise Continuous Functions

Interpretation

Suppose that f (x) satisfies the assumptions of the theorem
if f (x) is continuous at a, then f (a+) = f (a−) = f (a) and
therefore the Fourier series converges evaluated at x = a
converges to f (a)
if f (x) is discontinuous at a, then the Fourier series
converges to the average of the left and right limits of f (x)
as x → a.
for example, if f (x) is the square wave function

f (x) =
{

1, 0 ≤ x < 1
0, −1 ≤ x < 0

, f (x + 2) = f (x) for all x .

, then the Fourier series converges to f (x) everywhere
except for the discontinuous points, where it converges to
the average of 0 and 1, ie. 1/2.

W.R. Casper Math 309 Lecture 14


	More Fourier Series Examples
	Example 1
	Example 2

	Convergence of Fourier Series
	Piecewise Continuous Functions


