
Eigenvectors and Eigenvalues
Matrices as Linear Functions

Eigenspace Decomposition and Diagonalization

Math 309 Lecture 3
More Eigenthings

W.R. Casper

Department of Mathematics
University of Washington

October 14, 2015

W.R. Casper Math 309 Lecture 3



Eigenvectors and Eigenvalues
Matrices as Linear Functions

Eigenspace Decomposition and Diagonalization

Today!

Plan for today:
Eigenvector and Eigenvalue Practice
Matrices as Maps
Eigenspace Decomposition and Diagonalization

Next time:
First order Linear Systems of Equations
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Outline

1 Eigenvectors and Eigenvalues
Eigenbasics
Finding Eigenvectors and Eigenvalues

2 Matrices as Linear Functions
Linear Functions
Linear Functions and Matrices
Linear Functions and Eigenvalues

3 Eigenspace Decomposition and Diagonalization
Diagonalization
Eigenspace Decomposition
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Eigenreview!

let A be an n × n matrix
a vector ~v is an eigenvector with eigenvalue λ if

~v 6= ~0, and A~v = λ~v

e.g. ~v 6= ~0 and (A− λI)~v = 0
define the eigenspace of λ:

Eλ(A) := {~v : A~v = λ~v}

it’s a vector space!!! (the nullspace of the matrix A− λI)
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When is Eλ(A) 6= {0}?

λ is an eigenvalue of A if EA(λ) 6= {0}
for which values of λ does this happen?
recall the nullspace of B is N (B) = {~v : B~v = ~0}

B nonsingular ⇔ N (B) = {0}

B nonsingular ⇔ det(B) 6= 0

therefore N (B) = {0} ⇔ det(B) 6= 0
since Eλ(A) = N (A− λI), we see:

Eλ(A) 6= {0} ⇔ det(A− λI) = 0
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Finding Eigenvalues

we define the characteristic polynomial of A:

pA(x) = det(A− xI)

eigenvalues of A are roots of the characteristic polynomial
for example, consider:

A =

(
1 1
2 1

)
pA(x) = det(A− xI) = x2 − 2x − 1
eigenvalues are 1±

√
2
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Finding Eigenvectors

what are the corresponding eigenspaces of

A =

(
1 1
2 1

)
need to calculate nullspaces N (A− 1±

√
2)

we know how to do this! (RREF):

E1+
√

2(A) = N (A− (1 +
√

2)I) = span
{(

1
−
√

2

)}

E1−
√

2(A) = N (A− (1−
√

2)I) = span
{(

1√
2

)}

W.R. Casper Math 309 Lecture 3



Eigenvectors and Eigenvalues
Matrices as Linear Functions

Eigenspace Decomposition and Diagonalization

Linear Functions
Linear Functions and Matrices
Linear Functions and Eigenvalues

Functions

a function f from Rn to Rm

takes in an n-vector ~v
returns an m-vector f (~v)
denote this by f : Rn → Rm

example: f : R2 → R3

f
((

θ
φ

))
=

 cos(θ) sin(φ)
sin(θ) sin(φ)

cos(φ)


takes R2 to a sphere in R3
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Linear Functions

a function f : Rn → Rm is linear if it respects addition and
scalar multiplication, ie.

f (~v + ~w) = f (~v) + f (~w) and f (c~v) = cf (~v)

for example:

f
((

x
y

))
=

(
2x + 3y
3x − 4y

)
is linear

g
((

x
y

))
=

(
x + y

xy

)
is not linear
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Matrices Define Linear Functions

let A be an m × n matrix
define fA : Rn → Rm by fA(~v) = A~v
then f is a linear function
for example:

A =

(
2 3
3 −4

)
fA

((
x
y

))
=

(
2 3
3 −4

)
·
(

x
y

)
=

(
2x + 3y
3x − 4y

)
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Linear Functions Define Matrices

any linear function f is of the form fA for some matrix A

Theorem
Let f : Rn → Rm. Then f = fA for A the m × n matrix

A = (f (~e1) f (~e2) . . . f (~en)).

here ~e1, . . . , ~en are the standard basis vectors for Rn

e.g. I = (~e1 ~e2 . . . ~en)

thus studying linear functions is the same thing as studying
matrices
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Transform the Earth!

we can visualize f : R2 → R2 defined by a 2× 2 matrix A
for example

A =

(
1 1
0 2

)
, f = fA : ~v 7→ A~v
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What Happened to Earth?

the earth got stretched out!
roughly twice as wide in stretch direction
stretch direction is 45 degrees counter-clockwise from
positive x-axis
explained by eigenvectors/eigenvalues!
eigenvalues: 1,2
eigenspaces:

E1 = span
{(

1
0

)}
, E2 = span

{(
1
1

)}
eigenvectors of eigenvalue 2 point in stretch direction!
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Transform the Anglerfish!

another example

A =

(
−1 0
0 1

)
, f = fA : ~v 7→ A~v
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What Happened to our Fish?

we flipped our fish in the x-direction
eigenvalue explanation?
eigenvalues are 1 and −1
eigenspaces:

E−1 = span
{(

1
0

)}
, E1 = span

{(
0
1

)}
eigenvector for eigenvalue −1 in x-direction!
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Transform the Fractal!

another example

A =

(
0 1
−1 0

)
, f = fA : ~v 7→ A~v

W.R. Casper Math 309 Lecture 3



Eigenvectors and Eigenvalues
Matrices as Linear Functions

Eigenspace Decomposition and Diagonalization

Linear Functions
Linear Functions and Matrices
Linear Functions and Eigenvalues

What Happened to our Fractal?

we rotated counter-clockwise 90 degrees
eigenvalue explanation?
eigenvalues are i and −i
eigenspaces:

Ei = span
{(

1
i

)}
, E−i = span

{(
1
−i

)}
rotation gives us complex eigenvalues!
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Summary: Eigenvectors/Eigenvalues tell a Story

Figure: If the Fonz were an
eigenvector, he would have
eigenvalue aaaaaaaaay!

magnitude of eigenvalue
determines
dilation/contraction
(scaling)
direction of eigenvector
determines scaling
direction
negative and complex
eigenvalues determine
rotation and reflection
direction of eigenvector
determines reflection
direction
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Diagonalizable Matrices

a matrix D is diagonal if the only nonzero entries are on
the main diagonal
for example:

D =

 2 0 0
0 0 0
0 0 i


is diagonal.
a matrix A is diagonalizable if there exists an invertible
matrix P and a diagonal matrix D satisfying

P−1AP = D.
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Diagonalizable Matrices and Eigenstuff

how can we find P and D for a matrix A?
the diagonal entries of D are the eigenvalues of A
the column vectors of P are the corresponding
eigenvectors
this tells us how to diagonalize a matrix: find its
eigenvectors and eigenvalues
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Diagonalizing Matrices Example

Consider the matrix

A =

(
1 1
0 2

)
The eigenvalues of A, are 1 and 2
The eigenspaces of A are

E1 = span
{(

1
0

)}
, E2 = span

{(
1
1

)}
Define

P =

(
1 1
0 1

)
, D =

(
1 0
0 2

)
then one may check P−1AP = D
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Eigenbasis for Rn

important: not all matrices are diagonalizable!
example:

A =

(
1 1
0 1

)
is NOT diagonalizable
an n × n matrix A is diagonalizable if and only if Rn has a
eigenbasis
e.g. Rn has a basis consisting of eigenvectors of A
how can we tell?
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Eigenvalue Multiplicity

the algebraic multiplicity of an eigenvalue λ of A is the
number of times it is a root of the characteristic polynomial
pA(x)
the geometric multiplicity of an eigenvalue λ is the
dimension of the eigenspace Eλ(A)
Rn has an eigenbasis if and only if the sum of the
geometric multiplicities of eigenvalues of A is 1

Theorem
The algebraic multiplicity of an eigenvalue is always ≥ the
geometric multiplicity

Corollary
If all the eigenvalues of A have multiplicity 1, then A is
diagonalizable.
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Normality

let A† denote the Hermitian conjugate of A
two square matrices A and B commute if AB = BA
a matrix A is called normal if A and A† commute
a matrix U is called unitary if U† = U−1

Theorem (Spectral Theorem)
Let A be an n × n square matrix. The following are equivalent
(a) A is normal
(b) there exists a unitary matrix U and diagonal matrix D with

U−1AU = D

in particular, normal matrices are diagonalizable
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Example

for example, consider

A =

(
1 1
0 1

)
the hermitian conjugate is

A† =
(

1 0
1 1

)

AA† − A†A =

(
1 0
0 −1

)
therefore by the spectral theorem A is not diagonalizable
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Summary!

What we did today:
Systems of Linear Algebraic Equations
Linear Independence
Eigenvectors and Eigenvalues

Plan for next time:
Systems of first order ODEs

W.R. Casper Math 309 Lecture 3


	Eigenvectors and Eigenvalues
	Eigenbasics
	Finding Eigenvectors and Eigenvalues

	Matrices as Linear Functions
	Linear Functions
	Linear Functions and Matrices
	Linear Functions and Eigenvalues

	Eigenspace Decomposition and Diagonalization
	Diagonalization
	Eigenspace Decomposition


