Math 309 Lecture 4 More Eigenthings

W.R. Casper

Department of Mathematics University of Washington

October 7, 2015

Plan for today:

- First Order Linear Systems of ODEs
- Homogeneous First Order Linear Systems with Constant Coefficients

Next time:

• More Homogeneous First Order Linear Systems

First Order Linear Systems of ODEs

- Basics
- Superposition Principle
- Example

Provide the second state of the second stat

- Using Eigenvalues to Solve
- Example

Basics Superposition Principle Example

First Order Linear Systems

 a first order linear system of equations is something of the form

$$y'_{1}(t) = a_{11}(t)y_{1}(t) + a_{12}(t)y_{2}(t) + \dots + a_{1n}(t)y_{n}(t) + b_{1}(t)$$

$$y'_{2}(t) = a_{21}(t)y_{1}(t) + a_{22}(t)y_{2}(t) + \dots + a_{2n}(t)y_{n}(t) + b_{2}(t)$$

$$\vdots = \vdots$$

$$y'_n(t) = a_{n1}(t)y_1(t) + a_{n2}(t)y_2(t) + \dots a_{nn}(t)y_n(t) + b_n(t)$$

- where the $a_{ij}(t)$ and $b_i(t)$ are some specified functions
- and the y_i are some unknown functions we wish to find
 in terms of matrices:

$$\vec{y}'(t) = A(t)\vec{y}(t) + \vec{b}(t)$$

Basics Superposition Principle Example

Homogeneous Systems

- as for algebraic linear systems, it is convenient to consider the case when $\vec{b}(t) = \vec{0}$
- a homogeneous first order linear system of equations is something of the form

$$y'(t) = A(t)y(t).$$

 as in the n = 1 case, to any first order linear system, we associate a homogeneous system

$$\mathbf{y}'(t) = \mathbf{A}(t)\mathbf{y}(t) + \mathbf{b}(t) \longrightarrow \mathbf{y}'_h(t) = \mathbf{A}(t)\mathbf{y}_h(t).$$

 solving the homogeneous system will be the key to solving the full system

Basics Superposition Principle Example

Superposition Principle

 just like homogeneous algebraic systems, we have a superposition principle

Theorem (Superposition Principle)

Suppose that $\vec{y}(t) = \vec{w}(t)$ and $\vec{y}(t) = \vec{z}(t)$ are two solutions to $y' = A(t)\vec{y}(t)$. Then for any scalars $c_1, c_2, y = c_1w(t) + c_2z(t)$ is also a solution.

- the set of solutions to $y' = A(t)\vec{y}(t)$ forms a vector space
- natural question: what is the dimension of the space of solutions?

Basics Superposition Principle Example

Fundamental Set of Solutions

Theorem (Existence and Uniqueness)

Let $A(t) = (a_{ij}(t))$ be an $n \times n$ matrix, and $\vec{b}(t) = (b_i(t))$ be a vector with $a_{ij}(t), b_i(t)$ continuous on the interval (α, β) for all i, j. Then for any vector $\vec{v} \in \mathbb{R}^n$ and $t_0 \in (\alpha, \beta)$, there exists a unique solution to the initial value problem

$$y'(t) = A(t)y(t) + b(t), y(t_0) = \vec{v}.$$

Corollary

If A(t) is continuous on (α, β) , then the set of solutions to $y'(t) = A(t)\vec{y}(t)$ on (α, β) is *n*-dimensional.

Basics Superposition Principle Example

Fundamental Set of Solutions

- let A(t) be an n × n matrix continuous on (α, β). Then a basis for the set of solutions to y'(x) = A(x)y(x) is called a fundamental set of solutions for the system on the interval (α, β)
- in other words, a fundamental set of solutions is a set of *n* solutions $\vec{y}_1(x), \ldots, \vec{y}_n(x)$ which are linearly independent and such that every solution to y'(x) = A(x)y(x) is of the form

$$c_1\vec{y}_1(x)+c_2\vec{y}_2(x)+\cdots+c_n\vec{y}_n(x)$$

for some constants c_1, c_2, \ldots, c_n

• traditionally, we then call

$$y = c_1 \vec{y}_1(x) + c_2 \vec{y}_2(x) + \cdots + c_n \vec{y}_n(x)$$

the general solution

Basics Superposition Principle Example

Checking Linear Independence

Proposition

If A(t) is continuous on (α, β) , then a set of *n* solutions $\vec{y}_1(x), \ldots, \vec{y}_n(x)$ is a fundamental set of solutions for y'(t) = A(t)y(t) in (α, β) if and only if $\vec{y}_1, \ldots, \vec{y}_n$ are linearly independent.

- this is because we already know the dimension of the solution space!
- if we get *n* linearly independent solutions, then we get span for free
- how can we tell if the vector functions are linearly independent?

Wronskian

Basics Superposition Principle Example

Theorem

A set of solutions $\vec{y}_1(x), \ldots, \vec{y}_n(x)$ to y'(t) = A(t)y(t) is linearly independent if and only if

$$W[\vec{y}_1(x),\ldots,\vec{y}_n(x)] := \det(\vec{y}_1 \ \vec{y}_2 \ \ldots \ \vec{y}_n)$$

is nonzero on some point of the interval (α, β)

• we call $W[\vec{y}_1(x), \dots, \vec{y}_n(x)]$ the Wronskian

An Example

Basics Superposition Principle Example

Consider the homogeneous linear system of ODE's

$$y'(x) = A(x)y(x), A(x) = \begin{pmatrix} 1 & -2e^{-3x} \\ 0 & 2 \end{pmatrix}$$

Two solutions on the interval $(-\infty,\infty)$ are

$$ec{y}_1(x) = \left(egin{array}{c} e^x \ 0 \end{array}
ight), \ ec{y}_2(x) = \left(egin{array}{c} e^{-x} \ e^{2x} \end{array}
ight)$$

Is this a fundamental set of solutions on $(-\infty,\infty)$?

An Example

We check the Wronskian!

$$W[\vec{y}_1, \vec{y}_2] = \det(\vec{y}_1 \ \vec{y}_2) = \det\begin{pmatrix} e^x & e^{-x} \\ 0 & e^{2x} \end{pmatrix} = e^{3x}$$

Example

- it is nonzero on all of (α, β)
- consequently \vec{y}_1 and \vec{y}_2 are linearly independent
- since A is a 2 × 2 matrix, this means y
 ₁, y
 ₂ form a fundamental set of solutions on the interval (−∞,∞)
- general solution is therefore

$$\vec{y} = c_1 \left(egin{array}{c} e^x \\ 0 \end{array}
ight) + c_2 \left(egin{array}{c} e^{-x} \\ e^{2x} \end{array}
ight)$$

• a homogeneous first order linear system of equations with constant coefficients is something of the form

$$\vec{y}(t)' = A\vec{y}(t)$$

where A is a *constant* matrix (does not depend on t)

- can be solved explicitly by hand!
- the secret sauce to do this is eigenvalues

Using Eigenvalues to Solve Example

Using Eigenvalues

- we propose a solution of the form $\vec{y}(t) = e^{rt} \vec{v}$ for some constant vector \vec{v} and some constant *r*
- putting this into our equation, we get

$$re^{rt}\vec{v}=\vec{y}'=A\vec{y}=Ae^{rt}\vec{v}=e^{rt}A\vec{v}$$

• dividing by e^{rt} , this says $r\vec{v} = A\vec{v}$, eg. v is an eigenvector of A with eigenvalue r

Proposition

Let *A* be an $n \times n$ matrix. If \vec{v} is an eigenvector of *A* with eigenvalue *r*, then $\vec{y} = e^{rt}\vec{v}$ is a solution to y' = Ay

Question

Find the general solution of the differential equation

$$y'(t) = Ay(t), A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

- idea: use the solutions determined by eigenvectors and eigenvalues!
- eigenvalues of A are 1 and 2 (why?)
- corresponding eigenspaces:

$$E_1 = \text{span}\left\{ \left(egin{array}{c} 1 \\ 0 \end{array}
ight\}, \quad E_2 = \text{span}\left\{ \left(egin{array}{c} 1 \\ 1 \end{array}
ight)
ight\}$$

Using Eigenvalues to Solve Example

Example

• this gives us solutions

$$\vec{y}_1 = e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \vec{y}_2 = e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

• are they linearly independent?

$$W[\vec{y}_1, \vec{y}_2] = \det \left(egin{array}{cc} e^t & e^{2t} \ 0 & e^{2t} \end{array}
ight) = e^{3t}
eq 0.$$

- they are linearly independent, and therefore are a fundamental solution set on $(-\infty,\infty)$
- general solution:

$$y = c_1 e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Using Eigenvalues to Solve Example

What we did today:

• Systems of first order linear ODEs

Plan for next time:

Systems of first order ODEs