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Today!

Plan for today:
First Order Linear Systems of ODEs
Homogeneous First Order Linear Systems with Constant
Coefficients

Next time:
More Homogeneous First Order Linear Systems
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1 First Order Linear Systems of ODEs
Basics
Superposition Principle
Example

2 Homogeneous Linear Systems with Constant Coefficients
Using Eigenvalues to Solve
Example
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First Order Linear Systems

a first order linear system of equations is something of
the form

y ′1(t) = a11(t)y1(t) + a12(t)y2(t) + . . . a1n(t)yn(t) + b1(t)
y ′2(t) = a21(t)y1(t) + a22(t)y2(t) + . . . a2n(t)yn(t) + b2(t)

... =
...

y ′n(t) = an1(t)y1(t) + an2(t)y2(t) + . . . ann(t)yn(t) + bn(t)

where the aij(t) and bi(t) are some specified functions
and the yi are some unknown functions we wish to find
in terms of matrices:

~y ′(t) = A(t)~y(t) + ~b(t)
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Homogeneous Systems

as for algebraic linear systems, it is convenient to consider
the case when ~b(t) = ~0
a homogeneous first order linear system of equations is
something of the form

y ′(t) = A(t)y(t).

as in the n = 1 case, to any first order linear system, we
associate a homogeneous system

y ′(t) = A(t)y(t) + b(t) −→ y ′h(t) = A(t)yh(t).

solving the homogeneous system will be the key to solving
the full system
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Superposition Principle

just like homogeneous algebraic systems, we have a
superposition principle

Theorem (Superposition Principle)

Suppose that ~y(t) = ~w(t) and ~y(t) = ~z(t) are two solutions to
y ′ = A(t)~y(t). Then for any scalars c1, c2, y = c1w(t) + c2z(t)
is also a solution.

the set of solutions to y ′ = A(t)~y(t) forms a vector space
natural question: what is the dimension of the space of
solutions?
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Fundamental Set of Solutions

Theorem (Existence and Uniqueness)

Let A(t) = (aij(t)) be an n × n matrix, and ~b(t) = (bi(t)) be a
vector with aij(t),bi(t) continuous on the interval (α, β) for all
i , j . Then for any vector ~v ∈ Rn and t0 ∈ (α, β), there exists a
unique solution to the initial value problem

y ′(t) = A(t)y(t) + b(t), y(t0) = ~v .

Corollary

If A(t) is continuous on (α, β), then the set of solutions to
y ′(t) = A(t)~y(t) on (α, β) is n-dimensional.
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Fundamental Set of Solutions

let A(t) be an n × n matrix continuous on (α, β). Then a
basis for the set of solutions to y ′(x) = A(x)y(x) is called a
fundamental set of solutions for the system on the
interval (α, β)
in other words, a fundamental set of solutions is a set of n
solutions ~y1(x), . . . , ~yn(x) which are linearly independent
and such that every solution to y ′(x) = A(x)y(x) is of the
form

c1~y1(x) + c2~y2(x) + · · ·+ cn~yn(x)

for some constants c1, c2, . . . , cn

traditionally, we then call

y = c1~y1(x) + c2~y2(x) + · · ·+ cn~yn(x)

the general solution
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Checking Linear Independence

Proposition

If A(t) is continuous on (α, β), then a set of n solutions
~y1(x), . . . , ~yn(x) is a fundamental set of solutions for
y ′(t) = A(t)y(t) in (α, β) if and only if ~y1, . . . , ~yn are linearly
independent.

this is because we already know the dimension of the
solution space!
if we get n linearly independent solutions, then we get
span for free
how can we tell if the vector functions are linearly
independent?
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Wronskian

Theorem

A set of solutions ~y1(x), . . . , ~yn(x) to y ′(t) = A(t)y(t) is linearly
independent if and only if

W [~y1(x), . . . , ~yn(x)] := det(~y1 ~y2 . . . ~yn)

is nonzero on some point of the interval (α, β)

we call W [~y1(x), . . . , ~yn(x)] the Wronskian
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An Example

Consider the homogeneous linear system of ODE’s

y ′(x) = A(x)y(x), A(x) =
(

1 −2e−3x

0 2

)
Two solutions on the interval (−∞,∞) are

~y1(x) =
(

ex

0

)
, ~y2(x) =

(
e−x

e2x

)
Is this a fundamental set of solutions on (−∞,∞)?
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An Example

We check the Wronskian!

W [~y1, ~y2] = det(~y1 ~y2) = det
(

ex e−x

0 e2x

)
= e3x

it is nonzero on all of (α, β)
consequently ~y1 and ~y2 are linearly independent
since A is a 2× 2 matrix, this means ~y1, ~y2 form a
fundamental set of solutions on the interval (−∞,∞)

general solution is therefore

~y = c1

(
ex

0

)
+ c2

(
e−x

e2x

)
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Definition

a homogeneous first order linear system of equations
with constant coefficients is something of the form

~y(t)′ = A~y(t)

where A is a constant matrix (does not depend on t)
can be solved explicitly by hand!
the secret sauce to do this is eigenvalues
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Using Eigenvalues

we propose a solution of the form ~y(t) = ert~v for some
constant vector ~v and some constant r
putting this into our equation, we get

rert~v = ~y ′ = A~y = Aert~v = ertA~v

dividing by ert , this says r~v = A~v , eg. v is an eigenvector
of A with eigenvalue r

Proposition

Let A be an n × n matrix. If ~v is an eigenvector of A with
eigenvalue r , then ~y = ert~v is a solution to y ′ = Ay
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Question
Find the general solution of the differential equation

y ′(t) = Ay(t), A =

(
1 1
0 2

)

idea: use the solutions determined by eigenvectors and
eigenvalues!
eigenvalues of A are 1 and 2 (why?)
corresponding eigenspaces:

E1 = span
{(

1
0

)}
, E2 = span

{(
1
1

)}
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this gives us solutions

~y1 = et
(

1
0

)
, ~y2 = e2t

(
1
1

)
are they linearly independent?

W [~y1, ~y2] = det
(

et e2t

0 e2t

)
= e3t 6= 0.

they are linearly independent, and therefore are a
fundamental solution set on (−∞,∞)

general solution:

y = c1et
(

1
0

)
+ c2e2t

(
1
1

)
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Summary!

What we did today:
Systems of first order linear ODEs

Plan for next time:
Systems of first order ODEs
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