MATH 309: Homework #2

Due on: April 22, 2016

Problem 1 Jordan Normal Form

For each of the following values of the matrix A, find an invertible matrix P and a matrix N in Jordan normal form such that $P^{-1}AP = N$.

(a)	$A = \left(\begin{array}{cc} 1 & 1\\ 0 & 1 \end{array}\right)$	(f)	$A = \left(\begin{array}{rrr} 0 & 0 & 24 \\ 1 & 0 & 2 \\ 0 & 1 & -5 \end{array}\right)$
(b) (c)	$A = \left(\begin{array}{rrr} 1 & -1 \\ 1 & 2 \end{array}\right)$	(g)	$A = \left(\begin{array}{rrr} 0 & 0 & -1 \\ 1 & 0 & -3 \\ 0 & 1 & -3 \end{array}\right)$
(d)	$A = \left(\begin{array}{cc} 1 & 1\\ -1 & 1 \end{array}\right)$	(h)	$A = \left(\begin{array}{rrrr} 0 & 0 & -2 \\ 1 & 0 & 3 \\ 0 & 1 & 0 \end{array}\right)$
(e)	$A = \left(\begin{array}{cc} 0 & 1\\ 1 & -2 \end{array}\right)$	(i)	$A = \begin{pmatrix} -1 & -1 & 0 \\ 4 & 3 & 0 \\ -6 & -3 & 1 \end{pmatrix}$
	$A = \left(\begin{array}{cc} 0 & -1\\ 1 & -2 \end{array}\right)$	•••••	$\begin{pmatrix} -6 & -3 & 1 \end{pmatrix}$

Problem 2 Matrix Exponential

For each of the values of the matrix A in the previous problem, determine the value of $\exp(At)$

.

Problem 3 Fundamental Matrix

Find a fundamental matrix for each of the following systems of equations

(a)		(e)	
	$\begin{aligned} x' &= x + y \\ y' &= x - y \end{aligned}$		$\begin{aligned} x' &= x - y\\ y' &= 5x - 3y \end{aligned}$
(b)			<u> </u>
	$\begin{aligned} x' &= -x - 4y \\ y' &= x - y \end{aligned}$	(f)	
(c)	g = x - g		x' = 3x - 4y
	x' = x + y		y' = x - y
	y' = 4x - 2y	(g)	
(d)			
	$\begin{aligned} x' &= -x - 4y \\ y' &= x - y \end{aligned}$		$\begin{aligned} x' &= 4x - 8y\\ y' &= 8x - 4y \end{aligned}$

Problem 4 Matrix Sine and Cosine

NOT GRADED; DO NOT NEED TO DO

Let A be an $n \times n$ matrix. This problem concerns the matrix valued functions sin(At) and cos(At).

- (a) Show that $\frac{d}{dt}\sin(At) = A\cos(At)$
- (b) Show that $\frac{d}{dt}\cos(At) = -A\sin(At)$
- (c) Let $\vec{v}, \vec{w} \in \mathbb{R}^n$. Show that

$$\vec{y}(t) := \cos(At) \cdot \vec{v} + \sin(At)\vec{w}$$

is a solution to the differential equation

$$\vec{y}''(t) = -A^2 \vec{y}(t).$$

• • • • • • • • •

Problem 5 Second-order differential equations

NOT GRADED; DO NOT NEED TO DO

Consider the differential equation

$$y''(t) + by'(t) + cy(t) = 0.$$
 (1)

If we make the substitution, z(t) = y'(t), then we may rewrite Equation (1) as a system of two first-order equations

$$\begin{cases} y'(t) = z(t) \\ z'(t) = -cy(t) - bz(t) \end{cases}$$
(2)

- (a) Show that the characteristic polynomial of Equation (1) is the same as the characteristic polynomial of the matrix associated with the linear system in Equation (2).
- (b) Find the fundamental matrix of the system in Equation (2) when b = 5 and c = 4
- (c) Find the fundamental matrix of the system in Equation (2) when b = 2 and c = 5
- (d) Find the fundamental matrix of the system in Equation (2) when b = 2 and c = 1.
- (e) For (b)-(d), explain how the fundamental matrix you found corresponds to the general solution of Equation (1).

••••

Problem 6 A Zombie Outbreak

A zombie outbreak occurs in the isolated country Fictionland. Assume that the human per-capita birth rate in Fictionland is 0.013 and the per-capita death rate of humans is 0.008. The zombie outbreak leads to the conversion of humans to zombies at a rate of 0.003z(t), where z(t) is the zombie population of Fictionland at time t. Humans also destroy the zombies at a rate of dh(t), where h(t) is the population of humans in Fictionland at time t. Assuming that at time t = 0, there is an equal population of humans and zombies. For which values of d does the human population eventually die out?

• • • • • • • • •

Problem 7 Uniqueness of Fundamental Matrix

Let A(t) be a matrix continuous on the interval (α, β) . Show that if $\Psi(t)$ and $\Phi(t)$ are two fundamental matrices for the equation

$$\vec{y}'(t) = A(t)\vec{y}(t)$$

on the interval (α, β) , then there exists a (constant) invertible matrix P so that $\Phi(t) = \Psi(t)P$.

• • • • • • • • •

Problem 8 Nonhomogeneous Equations

For each of the following, find the general solution.

(a)
$$\begin{cases} x' = 2x - y + e^{t} \\ y' = 3x - 2y + t \end{cases}$$
 (c)
$$\begin{cases} x' = 2x - 5y - \cos(t) \\ y' = x - 2y + \sin(t) \end{cases}$$

(b)
$$\begin{cases} x' = x + y + e^{-2t} \\ y' = 4x - 2y - 2e^{t} \end{cases}$$
 (d)
$$\begin{cases} x' = -4x + 2y + t^{3} \\ y' = 2x - y - t^{-2} \end{cases}$$