MATH 309: Homework #4

Due on: May 6, 2016

Problem 1 Fourier Series

For each of the following functions, sketch a graph of the function and find the Fourier
series

(a) f(x) = sin®(x) + cos?(2x + 3)

(b) f(z)=—x, —L <z < L with f(z +2L) = f(z) for all x
(Your final answer will be in terms of L)

z+1, —7<z<0

l—z, 0<z<m with f(z + 2m) = f(z) for all «
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Problem 2 Parseval’s Identity

Let f(x) be a periodic function with fundamental period 2L, and suppose that
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Using the fact that
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is a mutually orthogonal set of functions, prove Parseval’s identity:
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Problem 3 2

Problem 3 Parseval’s Identity Application
Determine the precise value of the infinte sum

= 1
Z (2n — 1)

n=1
[Hint: Consider the Fourier series for the square wave function

0, -1<z<0 B
f(ﬂU)—{L 0<z<1 , with f(x 4+ 2) = f(x) for all ©

Use Parseval’s identity with this Fourier series to obtain the value of the infinite sum)|
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