
MATH 309: Homework #7

Due on: June 1, 2016

Problem 1 The Heat Equation in Two Dimensions

We consider the two dimensional heat equation

ut − α2(uxx + uyy) = 0.

(a) Assume that u is of the form u(x, y, t) = F (x)G(y)T (t), and show that the heat
equation reduces to the system of three ordinary differential equations

T ′(t) + λT = 0

F ′′(x) + λ−µ
α2 F (x) = 0

G′′(y) + µ
α2G(y) = 0

for some constants λ and µ.

(b) Assume that u(x, y, t) = F (x)G(y)T (t) satisfies the heat equation above in the
rectangular region [0, L]× [0,M ] and also satisfies the Dirichlet boundary condi-
tions

u(0, y, t) = 0, u(L, y, t) = 0, u(x, 0, t) = 0, u(x,M, t) = 0.

Find all possible functions u(x, y, t) satisfying the above conditions. [Hint: they
should be indexed by pairs of positive integers (m,n)]

(c) Use (b) to find a solution to the two dimensional heat equation with Dirichlet
boundary conditions

ut − (uxx + uyy) = 0,

u(0, y, t) = 0, u(1, y, t) = 0, u(x, 0, t) = 0, u(x, 1, t) = 0,

with the initial condition that

u(x, y, 0) = sin(3πx) sin(2πy) + sin(2πx) sin(4πy).

Create a surface plots of your solution for several values of t.

. . . . . . . . .

Solution 1.
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(a) Pluggin u(x, y, t) = F (x)G(y)T (t) into the two dimensional heat equation, we
obtain

F (x)G(y)T ′(t) = α2(F ′′(x)G(y)T (t) + F (x)G′′(y)T (t)).

Then dividing on both sides by F (x)G(y)T (t), we obtain:

T ′(t)/T (t) = α2(F ′′(x)/F (x) +G′′(y)/G(y)).

The expression on the left hand side is a function of t only, while the expression
on the right hand side is independent of t. Therefore both must be equal to a
constant −λ:

T ′(t)/T (t) = α2(F ′′(x)/F (x) +G′′(y)/G(y)) = −λ.

Simplifying this, we get
T ′(t)/T (t) = −λ

α2F ′′(x)/F (x) + α2G′′(y)/G(y) = −λ.

Therefore
α2F ′′(x)/F (x) = −α2G′′(y)/G(y)− λ.

Again the expression on the left hand side is a function of x only, and on the
right we have a function of y only, and therefore both are equal to a constant µ:

α2F ′′(x)/F (x) + λ = −α2G′′(y)/G(y) = µ.

It follows that
α2F ′′(x)/F (x) = µ− λ

−α2G′′(y)/G(y) = −µ.

Simplyfying things further we obtain the system of three ordinary differential
equations listed in (a) above.

(b) The Dirichlet boundary conditions result in boundary conditions on our various
ODE’s. In particular

F ′′(x) +
λ− µ
α2

F (x) = 0, F (0) = 0, F (L) = 0

and also
G′′(y) +

µ

α2
G(y) = 0, G(0) = 0, G(M) = 0.

Then from our experience with boundary value problems, to get a nontrivial
solution this says that µ = n2π2α2/M2 and that λ − µ = m2π2α2/L2 for some
integers m and n, and in this case the solutions we obtain are

F (x) = A sin(mπx/L), G(x) = B sin(nπy/M)
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for some constants A and B. Then λ = m2π2α2/L2 + n2π2α2/M2, and therefore

T = C exp

(
m2π2α2

L2
t+

n2π2α2

M2
t

)
.

Thus we obtain the solution

u(x, y, t) = F (x)G(y)T (t) = ABC exp

(
m2π2α2

L2
t+

n2π2α2

M2
t

)
sin(mπx/L) sin(nπx/M).

This motivates us to set

umn(x, y, t) = exp

(
m2π2α2

L2
t+

n2π2α2

M2
t

)
sin(mπx/L) sin(nπx/M).

Then by the superposition principle, any solution of the form

u(x, y, t) =
∞∑
m=1

∞∑
n=1

amnumn(x, y, t)

is a solution, for constants amn. In fact, all solutions may be written this way!

(c) From part (b), we know to try to write

u(x, y, t) =
∞∑
m=1

∞∑
n=1

amnumn(x, t)

for some constants amn, where here α2 = 1, L = 1,M = 1. we must choose the
constants so that

u(x, y, 0) =
∞∑
m=1

∞∑
n=1

amnumn(x, y, 0) =
∞∑
m=1

∞∑
n=1

amn sin(mπx) sin(nπx).

is equal to our initial condition. Looking at initial condition, this is easy! Just
choose a32 = 1, a24 = 1 and amn = 0 otherwise. Thus:

u(x, y, t) = u32(x, y, t)+u24(x, y, t) = e−13π
2t sin(3πx) sin(2πy)+e−20π

2t sin(2πx) sin(4πy).

Plots at various times are included below:

t = 0.000 t = 0.005

t = 0.010 t = 0.015
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Problem 2 The Heat Equation in Polar Coordinates

We consider the two dimensional heat equation

ut − α2(uxx + uyy) = 0.

(a) Show that using polar coordinates, (r, θ), the heat equation becomes

ut − α2

(
urr +

1

r
ur +

1

r2
uθθ

)
= 0.

(b) Assume that u is of the form u(r, θ, t) = R(r)S(θ)T (t), and show that the heat
equation reduces to the system of three ordinary differential equations

T ′(t) + λT = 0
r2R′′(r) + rR′(r) + 1

α2 (r2λ− µ)R = 0
S ′′(θ) + µ

α2S(θ) = 0

for some constants λ and µ.

(c) Explain why µ = n2α2 for some integer n. [Hint: remember that θ is the angle
counter-clockwise from the x-axis].

(d) Find the general solution to the above system of equations in the case that λ = 0
and µ = α2. [Hint: to solve for R(r), propose a solution of the form R(r) = rb]

. . . . . . . . .

Solution 2.

(a) Note that r2 = x2 + y2 and tan(θ) = y/x and therefore

rx = cos(θ), ry = sin(θ),

as well as

θx =
− sin(θ)

r
, θy =

cos(θ)

r
,

Then from the chain rule we have

∂

∂x
= rx

∂

∂r
+ θx

∂

∂θ
= cos(θ)

∂

∂r
− 1

r
sin(θ)

∂

∂θ

∂

∂y
= ry

∂

∂r
+ θy

∂

∂θ
= sin(θ)

∂

∂r
+

1

r
cos(θ)

∂

∂θ

Then we have that

∂2

∂x2
=

(
∂

∂x

)2

=

[
cos(θ)

∂

∂r
+
−1

r
sin(θ)

∂

∂θ

]2
=

[
cos(θ)

∂

∂r

]2
+

[
cos(θ)

∂

∂r

] [
−1

r
sin(θ)

∂

∂θ

]
+

[
−1

r
sin(θ)

∂

∂θ

] [
cos(θ)

∂

∂r

]
+

[
−1

r
sin(θ)

∂

∂θ

]2
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and also [
cos(θ)

∂

∂r

]2
= cos2(θ)

∂2

∂r2
.[

cos(θ)
∂

∂r

] [
−1

r
sin(θ)

∂

∂θ

]
=
−1

r
sin(θ) cos(θ)

∂2

∂r∂θ
+

1

r2
sin(θ) cos(θ)

∂

∂θ[
−1

r
sin(θ)

∂

∂θ

] [
cos(θ)

∂

∂r

]
=
−1

r
sin(θ) cos(θ)

∂2

∂r∂θ
+

1

r
sin2(θ)

∂

∂r
.[

−1

r
sin(θ)

∂

∂θ

]2
=

1

r2
sin2(θ)

∂2

∂θ2
+

1

r2
sin(θ) cos(θ)

∂

∂θ
.

Similarly,

∂2

∂y2
=

(
∂

∂y

)2

=

[
sin(θ)

∂

∂r
+

1

r
cos(θ)

∂

∂θ

]2
=

[
sin(θ)

∂

∂r

]2
+

[
sin(θ)

∂

∂r

] [
1

r
cos(θ)

∂

∂θ

]
+

[
1

r
cos(θ)

∂

∂θ

] [
sin(θ)

∂

∂r

]
+

[
1

r
cos(θ)

∂

∂θ

]2
and also [

sin(θ)
∂

∂r

]2
= sin2(θ)

∂2

∂r2
.[

sin(θ)
∂

∂r

] [
1

r
cos(θ)

∂

∂θ

]
=

1

r
sin(θ) cos(θ)

∂2

∂r∂θ
− 1

r2
sin(θ) cos(θ)

∂

∂θ
.[

1

r
cos(θ)

∂

∂θ

] [
sin(θ)

∂

∂r

]
=

1

r
sin(θ) cos(θ) +

1

r
cos2(θ)

∂

∂r
.[

1

r
cos(θ)

∂

∂θ

]2
=

1

r2
cos2(θ)

∂2

∂θ2
− 1

r2
sin(θ) cos(θ)

∂

∂θ
.

Adding all of this together, we obtain:

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

Applying this to the function u, we get

uxx + uyy = urr +
1

r
ur +

1

r2
uθθ.

Suubstiuting this into the heat equation leads to

ut − α2

(
urr +

1

r
ur +

1

r2
uθθ

)
= 0.
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(b) Putting u(r, θ, t) = R(r)S(θ)T (t) into the above expression, we obtain:

R(r)S(θ)T ′(t) = α2(R′′(r)S(θ)T (t) +
1

r
R′(r)S(θ)T (t) +

1

r2
R(r)S ′′(θ)T (t)).

Dividing everything by R(r)S(s)T (t), we obtain

T ′(t)/T (t) = α2(R′′(r)/R(r) +
1

r
R′(r)/R(r) +

1

r2
S ′′(θ)/S(θ)).

The expression on the left hand side is a function of t only, while the right hand
side is a function of r and θ only, and therefore both are equal to an arbitrary
constant −λ. This leads to

T ′(t)/T (t) = −λ

and also

α2(R′′(r)/R(r) +
1

r
R′(r)/R(r) +

1

r2
S ′′(θ)/S(θ)) = −λ.

Then after an algebraic manipulation,

α2r2R′′(r)/R(r)− α2rR′(r)/R(r)− r2λ = S ′′(θ)/S(θ).

Therefore again we have that both are equal to a constant −µ:

α2r2R′′(r)/R(r)− α2rR′(r)/R(r)− r2λ = −µ

and also
S ′′(θ)/S(θ) = −µ.

After some simplification, this reduces to the expression in (b) above.

(c) Since (r, θ) and (r, θ+2π) both refer to the same coordinate in polar coordinates,
the function S should satisfy S(θ) = S(θ + 2π). Moreover, we know that S
satisfies S ′′(θ) + (µ/α2)S(θ) = 0. Depending on the value of µ/α2, the solutions
to this are either exponentials, polynomials or trig. functions. Since we require
S to be periodic, we want them to be trig functions, and therefore we need µ/α2

to be positive. In this case, the general solution to the differential equation is

S(θ) = A cos(
√
µθ/α) +B sin(

√
µθ/α).

Now we need S to be 2π periodic, and therefore we need
√
µ/α = n for some

integer n. Therefore µ = n2α2.

(d) Since λ = 0, the solution for T is T = E for some constant E. Moreover, the
general solution for S is

S(θ) = A cos(θ) +B sin(θ)

Finally, we propose a solution R(r) = rb to the equation r2R′′(r)+rR′(r)−R(r) =
0, and therefore b(b − 1)rb−2rb + brb − rb = 0. This leads to b2 − 1 = 0, and
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therefore b = ±1. Thus we obtain two solutions: r and r−1. The general solution
is therefore

R(r) = Cr +Dr−1

. Putting this all together, we obtain

u(r, θ, t) = R(r)S(θ)T (t) = (Cr +Dr−1)(A cos(θ) +B sin(θ))E.

Since A,B,C,D,E are all arbitrary constants, we can rewrite this as:

u(r, θ, t) = C1r cos(θ) + C2r sin(θ) + C3r
−1 cos(θ) + C4r

−1 sin(θ).

Problem 3 The Wave Equation I

Consider an elastic string of length L = 10 whose ends are held fixed. The string is
set in motion with no initial velocity from an initial position u(x, 0) = f(x), and the
material properties of the string make u(x, t) satisfy the wave equation utt − c2uxx
with c = 1. For each of the values of f(x) below, determine

(i) Determine the solution u(x, t) in terms of an infinite linear combination of the
fundamental set of solutions un(x, t) = sin(nπx/L) cos(cnπt/L)

(ii) Plot u(x, t) vs. x for t = 0, 4, 8, 12, 16

(iii) Describe the motion of the string in a few sentences.

(a)

f(x) =

{
2x/L, 0 ≤ x ≤ L/2

2(L− x), L/2 < x ≤ L

(b)
f(x) = 8x(L− x)2/L3.

(c)

f(x) =

{
1, |x− L/2| < 1
0, |x− L/2| ≥ 1

. . . . . . . . .

Solution 3.

(a)

(i) The coefficients of the sine expansion of f(x) are given by

an =
4

n2π2
sin(nπ/2)− 2

nπ
cos(nπ/2) +

4L

n2π2
sin(nπ/2) +

2L

nπ
cos(nπ/2)

The solution is then given by

u(x, n) =
∞∑
n=1

an sin(nπx/L) cos(cnπt/L).
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(ii) The values of u(x, t) at the specified times are shown in the graph below.
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(iii) Initially, the string has a jagged jump at x = 5. As time goes on, this splits
into two separate jagged pieces that move left and right, respectively. As
they hit the ends of the string, each jagged part is reflected upside-down
proceeding now in the opposite direction. As they pass through each other
for the second time, they temporarily form a single jagged piece like the
original, but now upside-down. This immediately breaks apart again into
the two jagged pieces, which are again reflected when they reach the end
of the string, and finally arrive back in the center, forming once again the
original state of the string.

(b)

(a) The coefficients of the sine expansion of f(x) are given by

an =
64

n3π3
+ (−1)n

32

n3π3
.

The solution is then given by

u(x, n) =
∞∑
n=1

an sin(nπx/L) cos(cnπt/L).

(b) The values of u(x, t) at the specified times are shown in the graph below.
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(c) Initially, the string has a smooth hump slightly skewed to the left. This
hump moves off to the right, and when it reaches the end of the string, it is
flipped upside down, and then moves to the left. When it next reaches the
other end of the string it flips again, and moves back to the right, eventually
returning to the initial state.

(c)

(a) The coefficients of the sine expansion of f(x) are given by

an =
2

nπ
(cos(2nπ/5)− cos(3nπ/5)).

The solution is then given by

u(x, n) =
∞∑
n=1

an sin(nπx/L) cos(cnπt/L).

(b) The values of u(x, t) at the specified times are shown in the graph below.
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(c) Initially, the string has a square bump in the center. This splits up into
two square bumps, moving in opposite directions. When the bumps reach
the ends, they are reflected, so that they are upside down and moving in
the opposite directions they were before. As they pass over each other, they
reform the original square bump, but upside down. This then splits up and
the two squares move again to opposite ends of the string, where they are
again reflected. These eventually meet again in the middle, returning the
string to the original state.

Problem 4 The Wave Equation II

Consider an elastic string of length L = 10 whose ends are held fixed. The string is
set in motion from its equilibrium position with initial velocity given by ut(x, 0) =
g(x), and the material properties of the string make u(x, t) satisfy the wave equation
utt − c2uxx with c = 1. For each of the values of g(x) below, determine

(i) Determine the solution u(x, t) for 0 ≤ x ≤ L and t > 0 in terms of an infinite lin-
ear combination of the fundamental set of solutions un(x, t) = sin(nπx/L) sin(cnπt/L)

(ii) Plot u(x, t) vs. x for t = 0, 4, 8, 12, 16

(iii) Describe the motion of the string in a few sentences.

(a)

g(x) =

{
2x/L, 0 ≤ x ≤ L/2

2(L− x), L/2 < x ≤ L
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(b)
g(x) = 8x(L− x)2/L3.

(c)

g(x) =

{
1, |x− L/2| < 1
0, |x− L/2| ≥ 1

. . . . . . . . .

Solution 4.

(a)

(i) The coefficients of the sine expansion of f(x) are given by

an =
4

n2π2
sin(nπ/2)− 2

nπ
cos(nπ/2) +

4L

n2π2
sin(nπ/2) +

2L

nπ
cos(nπ/2)

The solution is then given by

u(x, n) =
∞∑
n=1

anL

cnπ
sin(nπx/L) sin(cnπt/L).

(ii) The values of u(x, t) at the specified times are shown in the graph below.
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(iii) Description is left to the reader.
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(b)

(i) The coefficients of the sine expansion of f(x) are given by

an =
64

n3π3
+ (−1)n

32

n3π3
.

The solution is then given by

u(x, n) =
∞∑
n=1

anL

cnπ
sin(nπx/L) sin(cnπt/L).

(ii) The values of u(x, t) at the specified times are shown in the graph below.
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(iii) Description is left to the reader.

(c)

(i) The coefficients of the sine expansion of f(x) are given by

an =
2

nπ
(cos(2nπ/5)− cos(3nπ/5)).

The solution is then given by

u(x, n) =
∞∑
n=1

anL

cnπ
sin(nπx/L) sin(cnπt/L).
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(ii) The values of u(x, t) at the specified times are shown in the graph below.
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(iii) Description is left to the reader.

Problem 5 Some Physics Flavor

A steel wire 5 ft in length is stretched by a tensile force of 50 lb. The wire has a
weight per unit lenght of 0.026 lb/ft.

(a) Find the velocity of propagation of transverse waves in the wire.

(b) Find the natrual frequencies of vibration.

(c) If the tension in the wire is increased, how are the natural frequencies changed?
Are the natural modes also changed?

. . . . . . . . .

Solution 5.

(a) The velocity of propagation is c =
√
T/ρ, where T is the tension and ρ is the

density. The tension is 50 lbs, and the weight per unit length is 0.026 lb/ft.
Using a gravitational acceleration of g = 32 ft/s2, we have that the mass per
unit length (eg. density) is ρ = 0.026/32 (in units of slugs, eg. lb·s2/ft2. Thus
c =

√
(50 ∗ 32/0.026) = 248.069 ft/s.
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(b) The (time) periods of oscillation of various modes are given by T = 2L/(nc), and
the corresponding (angular) frequencies are therefore f = 2π/T = πnc/(L) =
49.6138nπ.

(c) If we increase the tension of the wire, then c increases and as we see this increases
the values of the natural frequencies. The natural modes remain unchanged, since
the modes depend only on the length L of the string.

Problem 6 D’Alembert’s Method

Use D’Alembert’s Method to find a solution to the wave equation

utt − uxx = 0, 0 ≤ x ≤ 1, t > 0

satisfying u(0) = 0 and u(1) = 0, with the property that u(x, 0) = sin3(πx). Use this
solution to create a surface plot of u(x, t) for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 4.

. . . . . . . . .

Solution 6. D’Alembert says that if we take our original u(x, 0), which is defined for
0 ≤ x ≤ L, and then reflect it oddly in the interval −L ≤ x ≤ L, and then extend it
2L-periodically, to obtain a function f(x), then a solution to our question is given by

u(x, t) =
1

2
(f(x− ct) + f(x+ ct)).

Now since sin3(πx) is already odd with the right period, we can just take f(x) =
sin3(πx) in this case! Therefore the solution we want is

u(x, t) =
1

2
(sin3(π(x− ct)) + sin3(π(x+ ct))).

A surface plot of our solution is included below.
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Problem 7 Wave Equation with von Neummann Boundary
Conditions

Use separation of variables to find a solution to the wave equation

utt − c2uxx = 0

with the homogeneous von Neumman boundary conditions

ux(0, t) = 0, ux(L, t) = 0,

and satisfying the initial condition

u(x, 0) = cos(nπx/L), ut(x, 0) = 0,

where here n is a nonnegative integer.

. . . . . . . . .

Solution 7. For separation of variables, we propose a solution u(x, t) = F (x)T (t).
Then the usual work reduces to the equations

F ′′(x) +
λ

c2
F (x) = 0, T ′′(t) + λT (t) = 0.
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The interesting thing is how the Neumann boundary conditions induce Neumann
boundary conditions on F (x). Since ux(0, t) = 0, we see that F ′(0)G(t) = 0. Since
G(t) cannot be zero for a nontrivial solution, we must hvae F ′(0) = 0. Similarly, we
see that F ′(L) = 0. Therefore we have the homogeneous Neumann boundary value
problem

F ′′(x) +
λ

c2
F (x) = 0, F ′(0) = 0, F ′(L) = 0.

The usual considerations show that λ = n2π2c2/L2, and that F (x) = C cos(
√
λx/c)

for some constant C. Furthermore, since ut(x, 0) = 0, we see that G′(0) = 0, and
therefore G(t) = B cos(

√
λt). Therefore we see that

u(x, t) = F (x)G(t) = BC cos(
√
λx) cos(

√
λt) = BC cos(nπx/L) cos(cnπt/L).

To satisfy the initial condition, we take BC = 1, and therefore

u(x, t) = cos(nπx/L) cos(cnπt/L).
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