Linear Algebraic Systems Linear Dependence Eigenvectors and Eigenvalues

Math 309 Lecture 1 Linear Algebraic Systems and Eigenstuff

W.R. Casper

Department of Mathematics University of Washington

April 7, 2016

Today!

Plan for today:

- Systems of Linear Algebraic Equations
- Linear Independence
- Eigenvectors and Eigenvalues

Next time:

More on Eigenvectors and Eigenvalues

Outline

- Linear Algebraic Systems
 - Linear Systems
 - Solving Linear Algebraic Systems
- 2 Linear Dependence
 - Basic Definition
 - How to Check Linear Independence
- 3 Eigenvectors and Eigenvalues

Algebraic Systems of Equations

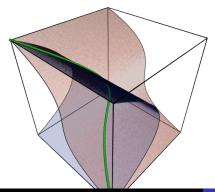
An algebraic system of equations is something of the form

$$\begin{cases}
F_1(x_1, x_2, \dots, x_n) &= 0 \\
F_2(x_1, x_2, \dots, x_n) &= 0 \\
\vdots &= \vdots \\
F_m(x_1, x_2, \dots, x_n) &= 0
\end{cases}$$

- x_1, \ldots, x_n are variables
- F_1, \ldots, F_m are functions describing relationships between variables
- **solutions** are values of x_1, \ldots, x_n satisfying relationships

Algebraic System Example

Figure: Graph of solutions to the system



For example

$$\begin{cases} xz - y^2 = 0 \\ y - z^2 = 0 \end{cases}$$

- Solution is green curve
- Made from intersection of surfaces
- Never forget! solutions to algebraic systems have both algebraic and geometric meaning

Linear Algebraic Systems

An algebraic system is linear if it is of the form

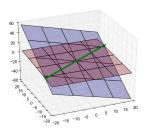
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n - b_1 &= 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n - b_2 &= 0 \\ \vdots &= \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n - b_m &= 0 \end{cases}$$

- for some constants a_{ij} and b_i
- in terms of matrices: $A\vec{x} = \vec{b}$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Linear Algebraic System Example

Figure: Graph of solutions to the system



For example

$$\begin{cases} 2y - 8z = 0 \\ x - 2y + z = 0 \end{cases}$$

Matrix version:

$$\left(\begin{array}{ccc} 0 & 2 & -8 \\ 1 & -2 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

- Solution is green curve
- Made from intersection of planes
- linear equations make straight things

Solving Linear Systems

Question

How can we algebraically solve a linear system?

- we can use Gaussian elimination
- given a linear system $A\vec{x} = \vec{b}$ as above
- form augmented matrix $[A|\vec{b}]$:

$$[A|\vec{b}] = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

• We perform **elementary row operations** to put $[A|\vec{b}]$ in **row reduced echelon form** (RREF)

Example Solution 1

consider the previous example linear system

$$\left(\begin{array}{ccc} 0 & 2 & -8 \\ 1 & -2 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

• the augmented matrix is

$$\left(\begin{array}{cc|c}0&2&8&0\\1&2&1&0\end{array}\right)$$

row reduce

$$\xrightarrow{R_1 \leftrightarrow R_2} \left(\begin{array}{ccc|c}1 & 2 & 1 & 0\\0 & 2 & 8 & 0\end{array}\right) \xrightarrow{R_1 - R_2} \left(\begin{array}{ccc|c}1 & 0 & -7 & 0\\0 & 2 & 8 & 0\end{array}\right) \xrightarrow{R_2/2} \left(\begin{array}{ccc|c}1 & 0 & -7 & 0\\0 & 1 & 4 & 0\end{array}\right)$$

Example Solution 1

how do we interpret RREF?

$$\left(\begin{array}{ccc|c}
1 & 0 & -7 & 0 \\
0 & 1 & 4 & 0
\end{array}\right)$$

- first nonzero entry of a row is a pivot corresponding column is a pivot column
- pivot columns correspond to dependent variables
- other columns correspond to free variables
- express dependent variables in terms of free variables
- row 1 says x 7z = 0
- row 2 says y + 4z = 0
- solution is

$$x = 7z, y = -4z.$$

Example Solution 1

consider the linear system

$$\left(\begin{array}{cc} 2 & 6 \\ 3 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 2 \\ -2 \end{array}\right)$$

the augmented matrix is

$$\left(\begin{array}{cc|c}
2 & 6 & 2 \\
3 & -1 & -2
\end{array}\right)$$

row reduce

• solution is x = -3/7, y = 5/7

Vectors

- (column) **vectors** are $m \times 1$ matrices
- vectors are describe things with magnitude and direction
- like matrices, we can add vectors and multiply vectors by scalars
- we cannot multiply vectors (shapes are not compatible)
- given vectors $\vec{v}_1, \dots, \vec{v}_n$ we can make a new vector by taking a **linear combination**:

$$c_1\vec{v}_1+c_2\vec{v}_2+\cdots+c_n\vec{v}_n$$

Linear Independence

• a set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is called **linearly dependent** if there exist constants c_1, \dots, c_n not all zero, so that

$$c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_n\vec{v}_n = \vec{0}$$

• a set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is called **linearly** independent if the only linear combination satisfying

$$c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_n\vec{v}_n = \vec{0}$$

is the **trivial** linear combination $c_1 = 0, c_2 = 0, \dots c_n = 0$.

Linear Independence Example

Given vectors

$$\vec{v}_1 = \left(\begin{array}{c} 1 \\ 4 \\ 7 \end{array} \right), \vec{v}_2 = \left(\begin{array}{c} 2 \\ 5 \\ 8 \end{array} \right), \vec{v}_3 = \left(\begin{array}{c} 3 \\ 6 \\ 9 \end{array} \right)$$

- is $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ linearly independent?
- no, since

$$-1\left(\begin{array}{c}1\\4\\7\end{array}\right)+2\left(\begin{array}{c}2\\5\\8\end{array}\right)+-1\left(\begin{array}{c}3\\6\\9\end{array}\right)=\left(\begin{array}{c}0\\0\\0\end{array}\right)$$

Linear Independence Example

Given vectors

$$\vec{v}_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

- is $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ linearly independent?
- yes (we will show this in a second)

Checking Linear Independence

Question

How do we tell if a set of vectors $\{\vec{v}_1,\ldots,\vec{v}_n\}$ is linearly independent?

• we are trying to decide if there exist c_1, \ldots, c_n such that

$$c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_n\vec{v}_n = \vec{0}$$

• in terms of matrices, trying to solve $V\vec{c} = \vec{0}$ for

$$V=(ec{v}_1 \ ec{v}_2 \ \dots \ ec{v}_n), \ ec{c}=\left(egin{array}{c} c_1 \ c_2 \ \ddots \ c_n \end{array}
ight)$$

Checking Linear Independence Example

consider the vectors

$$\vec{v}_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

• $c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 = \vec{0}$ gives:

$$\left(\begin{array}{ccc}0&1&1\\1&0&1\\1&1&0\end{array}\right)\left(\begin{array}{c}c_1\\c_2\\c_3\end{array}\right)=\left(\begin{array}{c}0\\0\\0\end{array}\right)$$

the augmented matrix is

$$\left(\begin{array}{ccc|c}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)$$

Checking Linear Independence Example

we row reduce

$$\xrightarrow{R_1 \leftrightarrow R_2} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{array} \right) \xrightarrow{R_3 - R_1} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{array} \right) \xrightarrow{R_3 - R_2} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -2 & 0 \end{array} \right)$$

$$\xrightarrow{R_3/(-2)} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right) \xrightarrow{R_1-R_3} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right) \xrightarrow{R_2-R_3} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

- therefore the *only* solution is $c_1 = 0, c_2 = 0, c_3 = 0$
- this means that $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are linearly independent

Checking Linear Independence

- recall that the rank of a matrix A is the number of pivot columns in its RREF
- to decide linear independence, the following theorem is helpful:

Theorem

The set of vectors

$$\{\vec{v}_1,\dots,\vec{v}_n\}$$

is linearly independent if and only if the associated matrix $V = (\vec{v}_1 \ \vec{v}_2 \ \vec{v}_n)$ has rank n

 therefore we can check for linear dependence by calculating the rank of the corresponding matrix

What are Eigenvectors?

Figure: eigen is German for proper

- Let A be an $n \times n$ matrix
- An eigenvector \vec{v} of A with eigenvalue λ is a nonzero vector \vec{v} satisfying

$$A\vec{v} = \lambda \vec{v}$$

• For example $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector of $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ with eigenvalue 2

Finding Eigenvalues

Question

How can we figure out what eigenvalues a matrix has?

look at the characteristic polynomial

$$p_A(x) = \det(A - xI)$$

- eigenvalues of A are roots of the characteristic polynomial
- for example, consider:

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$$

- $p_A(x) = \det(A xI) = x^2 2x$
- eigenvalues are 0 and 2

Finding Eigenvectors

Question

How can we figure out what eigenvectors a matrix has?

- given eigenvalue λ , solve the system $A\vec{v} = \lambda \vec{v}$
- equivalently, solve the system $(A \lambda I)\vec{v} = \vec{0}$
- Note: the solutions to $(A \lambda I)\vec{v} = \vec{0}$ form a **vector space**, called the **eigenspace** of *A* for λ
- denoted $E_{\lambda}(A)$

Finding Eigenvectors

for example, consider:

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$$

- the eigenvalues are again 0,2
- the eigenspaces are obtained by solving $A\vec{v} = \vec{0}$ and $(A 2I)\vec{v} = \vec{0}$
- this gives

$$E_0(A) = \left\{ \left(\begin{array}{c} x \\ -x \end{array} \right) : x \in \mathbb{C} \right\}$$

$$E_2(A) = \left\{ \left(\begin{array}{c} x \\ x \end{array} \right) : x \in \mathbb{C} \right\}$$

Summary!

What we did today:

- Systems of Linear Algebraic Equations
- Linear Independence
- Eigenvectors and Eigenvalues

Plan for next time:

- More on eigenvectors and eigenvalues
- More linear algebra stuff in general