Math 309 Lecture 2
More Eigenthings

W.R. Casper

Department of Mathematics
University of Washington

April 7, 2016

W.R. Casper Math 309 Lecture 2



Plan for today:
@ Eigenvector and Eigenvalue Practice
@ Matrices as Maps
@ Eigenspace Decomposition and Diagonalization

Next time:
@ First order Linear Systems of Equations
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Outline

0 Eigenvectors and Eigenvalues
@ Eigenbasics
@ Finding Eigenvectors and Eigenvalues

e Matrices as Linear Functions
@ Linear Functions
@ Linear Functions and Matrices
@ Linear Functions and Eigenvalues

e Eigenspace Decomposition and Diagonalization
@ Diagonalization
@ Eigenspace Decomposition

W.R. Casper Math 309 Lecture 2



Eigenvectors and Eigenvalues Eigenbasics

Finding Eigenvectors and Eigenvalues

Eigenreview!

@ let Abe an n x n matrix
@ a vector v is an eigenvector with eigenvalue )\ if

V+£0, and AV = AV

eeg v£0and (A— AV =0
@ define the eigenspace of A:

E\(A) :={V: AV =)V}

@ it's a vector space!!! (the nullspace of the matrix A — AJ)
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Eigenvectors and Eigenvalues Eigenbasics

Finding Eigenvectors and Eigenvalues

When is E\(A) # {0}?

@ \is an eigenvalue of Aif E4(\) # {0}
@ for which values of \ does this happen?
e recall the nullspace of Bis N'(B) = {V : BV = 0}

B nonsingular < AN/(B) = {0}

B nonsingular < det(B) # 0

@ therefore N(B) = {0} < det(B) #0
@ since E5(A) = N(A— \l), we see:

Ex(A) # {0} < det(A— ) =0
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Eigenvectors and Eigenvalues Eigenbasics

Finding Eigenvectors and Eigenvalues

Finding Eigenvalues

@ we define the characteristic polynomial of A:
pa(x) = det(A — xI)

@ eigenvalues of A are roots of the characteristic polynomial
@ for example, consider:

@ pa(x) =det(A— xI) = x> —2x — 1
@ eigenvalues are 1 + /2
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Eigenvectors and Eigenvalues Eigenbasics

Finding Eigenvectors and Eigenvalues

Finding Eigenvectors

@ what are the corresponding eigenspaces of

1 1
A=(21)
@ need to calculate nullspaces N (A — 1 +/2)
@ we know how to do this! (RREF):

Ei va(A) =N(A-(1 +v2)) :span{< _1@ >}
E, (A =N(A-(1 —\@)’):Spa”K \1@ >}
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

Functions

@ a function f from R"” to R™
@ takes in an n-vector v

@ returns an m-vector f(V)

@ denote this by f : R" — R™
@ example: f : R? - R3

(1)) Sen

takes R? to a sphere in R3
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

Linear Functions

@ afunction f : R” — R is linear if it respects addition and
scalar multiplication, ie.

f(v+w)=f(V)+ f(w) and f(cv) = cf(V)
(()-(558)
o((5))=("")
is not linear
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

Matrices Define Linear Functions

@ let Abe an m x n matrix

@ define fa : R" — R™ by f4(V) = AV
@ then fis a linear function

@ for example:

(3)-(a2%)
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

Linear Functions Define Matrices

@ any linear function f is of the form f, for some matrix A

Let f: R" — R™. Then f = f4 for Athe m x n matrix

A= (f(&) f(8s) ... f(&n)).

@ here é4,..., &, are the standard basis vectors for R”

0eg./=(66 ... &

@ thus studying linear functions is the same thing as studying
matrices
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

Transform the Earth!

@ we can visualize f : R? — R? defined by a 2 x 2 matrix A
o for example

1 1 _ -
A:(O 2), f="Ff4: v Av
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

What Happened to Earth?

@ the earth got stretched out!

@ roughly twice as wide in stretch direction

@ stretch direction is 45 degrees counter-clockwise from
positive x-axis

@ explained by eigenvectors/eigenvalues!

@ eigenvalues: 1,2

@ eigenspaces:

s {( 3 )} emson{( 1))

@ eigenvectors of eigenvalue 2 point in stretch direction!
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

Transform the Anglerfish!

@ another example
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

What Happened to our Fish?

@ we flipped our fish in the x-direction
@ eigenvalue explanation?

@ eigenvalues are 1 and —1

@ eigenspaces:

£ -l (1)) 5 -em{(4)}

@ eigenvector for eigenvalue —1 in x-direction!
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

Transform the Fractal!

@ another example
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

What Happened to our Fractal?

@ we rotated counter-clockwise 90 degrees
@ eigenvalue explanation?

@ eigenvalues are j and —i

@ eigenspaces:

ol (1)}. €] (1)}

@ rotation gives us complex eigenvalues!
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Linear Functions
Matrices as Linear Functions Linear Functions and Matrices
Linear Functions and Eigenvalues

Summary: Eigenvectors/Eigenvalues tell a Story

@ magnitude of eigenvalue
Figure: If the Fonz were an determines

eigenvector, he would have dilation/contraction
eigenvalue aaaaaaaaay! (scaling)

@ direction of eigenvector
determines scaling
direction

@ negative and complex
eigenvalues determine
rotation and reflection

@ direction of eigenvector
determines reflection
direction
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Diagonalization

X . . R Eigenspace D m ition
Eigenspace Decomposition and Diagonalization (e e ]

Diagonalizable Matrices

@ a matrix D is diagonal if the only nonzero entries are on
the main diagonal

@ for example:

o

Il
comN
ooo
-~ oo

is diagonal.

@ a matrix A is diagonalizable if there exists an invertible
matrix P and a diagonal matrix D satisfying

P'AP = D.
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Diagonalization

Eigenspace Decomposition and Diagonalization SEIEFEED (DR e

Diagonalizable Matrices and Eigenstuff

@ how can we find P and D for a matrix A?
@ the diagonal entries of D are the eigenvalues of A

@ the column vectors of P are the corresponding
eigenvectors

@ this tells us how to diagonalize a matrix: find its
eigenvectors and eigenvalues
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Diagonalization

. . ) - Eigenspace Decomposition
Eigenspace Decomposition and Diagonalization gensy P

Diagonalizing Matrices Example

@ Consider the matrix

1
A (|

@ The eigenvalues of A, are 1 and
@ The eigenspaces of A are

e-sn{(3)} @msn{(1))

@ Define 1 0
1 1
P:<0 1)’ D:(o 2>

@ then one may check P~'AP = D
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Diagonalization

Eigenspace Decomposition and Diagonalization Eldepspcelbecooysiia]

Eigenbasis for R”

@ important: not all matrices are diagonalizable!

@ example:
1 1
A:<o1>

is NOT diagonalizable

@ an n x nmatrix A is diagonalizable if and only if R” has a
eigenbasis

@ e.g. R” has a basis consisting of eigenvectors of A
@ how can we tell?
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Diagonalization

Eigenspace Decomposition and Diagonalization Eldepspcelbecooysiia]

Eigenvalue Multiplicity

@ the algebraic multiplicity of an eigenvalue X of A is the
number of times it is a root of the characteristic polynomial
PA(X)

@ the geometric multiplicity of an eigenvalue X is the
dimension of the eigenspace E)(A)

@ R has an eigenbasis if and only if the sum of the
geometric multiplicities of eigenvalues of A is 1

The algebraic multiplicity of an eigenvalue is always > the
geometric multiplicity

v

Corollary

If all the eigenvalues of A have multiplicity 1, then A is
diagonalizable.

W.R. Casper Math 309 Lecture 2




Diagonalization

Eigenspace Decomposition and Diagonalization Eldepspcelbecooysiia]

Normality

@ let AT denote the Hermitian conjugate of A

@ two square matrices A and B commute if AB = BA
@ a matrix A is called normal if A and AT commute

@ a matrix U is called unitary if Ut = U~

Theorem (Spectral Theorem)

Let A be an n x n square matrix. The following are equivalent

(a) Ais normal

(b) there exists a unitary matrix U and diagonal matrix D with
U'AU=D

(c) Alis diagonalizable
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Diagonalization

Eigenspace Decomposition and Diagonalization SR R esli

Example

o for example, consider

=

@ the hermitian conjugate is

10
T —
A_<11>

AAT _ AA = ( 10 )

o —-
—_
N———

0 -1

@ therefore by the spectral theorem A is not diagonalizable
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Diagonalization

) i ) - i osition
Eigenspace Decomposition and Diagonalization EETEFEED EEeii

Summary!

What we did today:
@ Systems of Linear Algebraic Equations
@ Linear Independence
@ Eigenvectors and Eigenvalues
Plan for next time:
@ Systems of first order ODEs
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