Math 309 Lecture 4 Linear Independence and the Wronskian

W.R. Casper

Department of Mathematics University of Washington

April 7, 2016

Today!

Plan for today:

- Wronskian
- More Practice with Homogeneous First Order Linear Systems

Next time:

Direction Fields (eg. Slope Fields)

Outline

- Wronskian and Linear Independence
 - Basic Definitions
 - Wronskian and Linear Independence
- More on Homogeneous Systems
 - Example

Linear Dependence and Independence

 We first define the notion of linear dependence and independence for functions

Definition

A collection of vector-valued functions $\{\vec{f}_1(x),\ldots,\vec{f}_m(x)\}$ is **linearly dependent on the interval** (α,β) if there exist constants c_1,c_2,\ldots,c_m with at least one of the constants nonzero, such that

$$c_1 \vec{f}_1(x) + c_2 \vec{f}_2(x) + \cdots + c_m \vec{f}_m(x) = \vec{0}$$

for all $x \in (\alpha, \beta)$. If the collection of functions is not linearly dependent, then it is called **linearly independent**.

The Wronskian

Question

Given a collection of functions $\{\vec{f}_1(x), \ldots, \vec{f}_m(x)\}$, how can we check whether their linearly dependent or independent on an interval (α, β) ?

- Can't really try *all* values of x (infinitely many!)
- If the vector functions each have n entries and m = n, we have a tool that can help!

Definition

The **Wronskian** of *n* functions $\vec{f}_1(x), \dots, \vec{f}_n(x)$ from \mathbb{R} to \mathbb{R}^n is defined to be

$$W[\vec{f}_1(x), \vec{f}_2(x), \dots, \vec{f}_n(x)] = \det([\vec{f}_1(x) \ \vec{f}_2(x) \ \dots \ \vec{f}_n(x)]).$$

Example 1

Consider the functions

$$\vec{f}_1(x) = \begin{pmatrix} 2x \\ x \end{pmatrix}, \quad \vec{f}_2(x) = \begin{pmatrix} e^x \\ e^{-x} \end{pmatrix}.$$

We calculate the Wronskian:

$$W[\vec{t}_1(x), \vec{t}_2(x)] = \det\left(\begin{bmatrix} 2x & e^x \\ x & e^{-x} \end{bmatrix}\right) = 2xe^{-x} - xe^x.$$

Example 2

Consider the functions

$$\vec{f}_1(x) = \left[\begin{array}{c} e^x \\ 2e^x \\ 3e^x \end{array} \right], \quad \vec{f}_1(x) = \left[\begin{array}{c} e^{2x} \\ 2e^{2x} \\ 4e^{2x} \end{array} \right], \quad \vec{f}_3(x) = \left[\begin{array}{c} e^{-x} \\ -e^{-x} \\ e^{-x} \end{array} \right].$$

We calculate the Wronskian:

$$W[\vec{f}_1(x), \vec{f}_2(x), \vec{f}_3(x)] = \det \left(\begin{bmatrix} e^x & e^{2x} & e^{-x} \\ 2e^x & 2e^{2x} & -e^{-x} \\ 3e^x & 4e^{2x} & e^{-x} \end{bmatrix} \right) = 3e^{2x}.$$

Wronskian Theorem 1

 The following theorem demonstrates how the Wronskian may be used to show linear dependence/independence

Theorem (Wronskian Theomem 1)

A set of functions $\vec{f}_1(x), \ldots, \vec{f}_n(x)$ from \mathbb{R} to \mathbb{R}^n is linearly independent in the interval (α, β) if

$$W[\vec{t}_1(x),\ldots,\vec{t}_n(x)]\neq 0$$

for at least one value of x in the interval (α, β)

Revisiting Example 2

• In a previous example, we considered the functions

$$\vec{f}_1(x) = \begin{bmatrix} e^x \\ 2e^x \\ 3e^x \end{bmatrix}, \quad \vec{f}_1(x) = \begin{bmatrix} e^{2x} \\ 2e^{2x} \\ 4e^{2x} \end{bmatrix}, \quad \vec{f}_3(x) = \begin{bmatrix} e^{-x} \\ -e^{-x} \\ e^{-x} \end{bmatrix}.$$

We calculated the Wronskian:

$$W[\vec{f}_1(x), \vec{f}_2(x), \vec{f}_3(x)] = 3e^{2x}.$$

• Since this is nonzero for at least one value of x, we see that these functions are linearly independent on the interval $(-\infty,\infty)$.

Wronskian Danger

WARNING

Be careful! If the wronskian is nonzero, then we have linear independence. However, if the Wronskian is zero it DOES NOT mean that we have linear dependence.

Consider the vector functions

$$\vec{f}_1(x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \vec{f}_2(x) = \begin{pmatrix} e^x \\ 0 \end{pmatrix}.$$

We calculate

$$W[\vec{t}_1(x), \vec{t}_2(x)] = \det \left(\begin{bmatrix} 1 & e^x \\ 0 & 0 \end{bmatrix} \right) = 0.$$

However, the functions are linearly independent, since

$$c_1 \binom{1}{0} + c_2 \binom{e^x}{0} = \binom{0}{0} \ \Rightarrow \ c_1 + c_2 e^x = 0 \ \Rightarrow c_1 = 0, \ c_2 = 0.$$

Wronskian Theorem 2

 The previous warning is not important if the functions you are checking are solutions of the same homogeneous equation

Theorem (Wronskian Theomem 2)

Let A(x) be an $n \times n$ matrix of functions whose coefficient functions are continuous on an interval (α, β) . A set of solutions $\vec{y}_1(x), \ldots, \vec{y}_n(x)$ to y'(t) = A(t)y(t) on the interval (α, β) is linearly independent on (α, β) if and only if

$$W[\vec{y}_1(x), \dots, \vec{y}_n(x)] := \det(\vec{y}_1 \ \vec{y}_2 \ \dots \ \vec{y}_n)$$

is nonzero on some point of the interval (α, β) . In this case, the Wronskian is nonzero for all $x \in (\alpha, \beta)$.

An Example

Consider the homogeneous linear system of ODE's

$$y'(x) = A(x)y(x), \ A(x) = \begin{pmatrix} 1 & -2e^{-3x} \\ 0 & 2 \end{pmatrix}$$

Two solutions on the interval $(-\infty, \infty)$ are

$$\vec{y}_1(x) = \begin{pmatrix} e^x \\ 0 \end{pmatrix}, \ \vec{y}_2(x) = \begin{pmatrix} e^{-x} \\ e^{2x} \end{pmatrix}$$

Is this a fundamental set of solutions on $(-\infty, \infty)$?

An Example

We check the Wronskian!

$$W[\vec{y}_1, \vec{y}_2] = \det(\vec{y}_1 \ \vec{y}_2) = \det\begin{pmatrix} e^x & e^{-x} \\ 0 & e^{2x} \end{pmatrix} = e^{3x}$$

- it is nonzero on all of $(-\infty, \infty)$
- consequently \vec{y}_1 and \vec{y}_2 are linearly independent
- since A is a 2 × 2 matrix, this means \vec{y}_1, \vec{y}_2 form a fundamental set of solutions on the interval $(-\infty, \infty)$
- general solution is therefore

$$\vec{y} = c_1 \begin{pmatrix} e^x \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} e^{-x} \\ e^{2x} \end{pmatrix}$$

Summary!

What we did today:

Systems of first order linear ODEs

Plan for next time:

Systems of first order ODEs