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Plan for today:
Direction Fields

Next time:
Complex Eigenvalues
Stability of the Origin
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Direction Fields

Consider a 2 × 2 system

y ′
1 = ay1 + by2

y ′
2 = cy1 + dy2

solving this system has both algebraic and geometric
interpretations
we can draw a “picture" of the equation in the phase plane
here by phase plane we mean the y1, y2 plane
strategy: at each point (y1, y2) draw a dash in direction of
vector (

y ′
1

y ′
2

)
=

(
ay1 + by2
cy1 + dy2

)
.

result is called a direction field
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Example Direction Field
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Solutions as Tangent Curves

think of slope field as current in the ocean
solutions to the system of equation are traced out by path
of a (slow) boat
the path a boat takes traces a curve whose tangent lines
always point in direction of local slope field
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A Boat in the Ocean
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The Path of the Boat
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More Possible Paths
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Observations:

regardless of the initial position, the “boat" moves away
from the origin
unless if the boat starts at the origin, in which case it stays
there
for this reason, in this case we call the origin an
exponentially unstable node
note that there are also two straight paths the boat can
take – corresponding to eigenvectors!
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Straight Paths from Eigenvectors
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Saddle Point or Node

the origin does not have to be an exponentially unstable
node
it may also be a exponentially stable node or a saddle
point
for an exponentially stable node, solutions tend toward the
origin
for a saddle point, solutions tend both toward and away
from the origin, based on the initial condition
for the equation ~y ′(t) = A~y(t), the behavior of solutions
around the origin depends on the eigenvalues of A
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Exponentially Stable Node
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Saddle Node
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Behavior of the Origin

the origin is always a fixed point of ~y ′(t) = Ay(t)

eg. ~y(t) = ~0 is a constant solution of the equation
how other solutions behave is based on the eigenvalues of
A:

(a) if both eigenvalues of A are real and positive, then origin is
an exponentially unstable node

(b) if both eigenvalues of A are real and negative, then origin is
an exponentially stable node

(c) if both eigenvalues of A are mixed sign, then origin is a
saddle point

(d) what about when the eigenvalues of A are complex?
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Summary!

What we did today:
Direction Fields

Plan for next time:
Complex Eigenvalues
Stability of the Origin
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