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Stability of the Origin
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Review of Results from Last Time

the origin is always a fixed point of ~y ′(t) = Ay(t)

eg. ~y(t) = ~0 is a constant solution of the equation
how other solutions behave is based on the eigenvalues of
A:

(a) if both eigenvalues of A are real and positive, then origin is
an exponentially unstable node

(b) if both eigenvalues of A are real and negative, then origin is
an exponentially stable node

(c) if both eigenvalues of A are mixed sign, then origin is a
saddle point

(d) what about when the eigenvalues of A are complex?
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Spirally Slope Fields

slope fields for complex eigenvalues are characterized by
spiral patterns
for example:

A =

(
−1/2 1
−1 −1/2

)
characteristic polynomial is

pA(x) = det(A − xI) = x2 + x +
5
4

eigenvalues of A are −(1/2)± i
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Complex Eigenvalues: −(1/2)± i
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Behavior of the Origin

suppose that A has complex eigenvalues
they come in conjugate pairs! λ1 = a + ib, λ2 = a − ib
the origin is always a fixed point of ~y ′(t) = Ay(t)
whether our ship moves toward or away depends on value
of a

(a) if a is positive, move away
(b) if a is negative, move toward
(c) if a is zero, circle around
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Complex Eigenvalues: (1/2)± i
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Complex Eigenvalues: ±i
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What about General Solutions?

Question
How do we find the general solution in the case that A has
complex eigenvalues?

use Euler’s definition!

eiθ = cos(θ) + i sin(θ)

we can then take our eigenvalue solutions and write them
as linear combinations of real solutions
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Example

Question
Find the general solution of the equation

~y ′(x) = A~y , A =

(
1 1
4 1

)

first we find the eigenvalues: −(1/2)± i
then we find the corresponding eigenspaces:

E−(1/2)+i = span
{(

1
i

)}
E−(1/2)−i = span

{(
1
−i

)}
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Example

from this we get two (complex) solutions

~y1(t) =
(

1
i

)
e(−1/2+i)t ~y2(t) =

(
1
−i

)
e(−1/2−i)t

by the superposition principal we get the family of
solutions:

~y(t) = c1

(
1
i

)
e(−1/2+i)t + c2

(
1
−i

)
e(−1/2−i)t

= c1e−t/2
(

cos(t) + i sin(t)
i cos(t) − sin(t)

)
+ c2e−t/2

(
cos(t) − i sin(t)
−i cos(t) − sin(t)

)
= e−t/2

(
(c1 + c2) cos(t) + i(c1 − c2) sin(t)
i(c1 − c2) cos(t) − (c1 + c2) sin(t)

)
= e−t/2

(
b1 cos(t) + b2 sin(t)
b2 cos(t) − b1 sin(t)

)
= b1e−t/2

(
cos(t)
− sin(t)

)
+ b2e−t/2

(
sin(t)
cos(t)

)
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Correspondence

the stability of the origin depends on the eigenvalues of the
matrix A
five possibilities:
(1) all eigenvalues are real and negative –> origin is

exponentially stable (sink)
(2) all of the eigenvalues are real and positive –> origin is

unstable (source)
(3) eigenvalues are real and opposite-signed –> origin is

saddle
(4) both of the eigenvalues are complex with positive real

component –> origin is spirally unstable (spiral source)
(5) both of the eigenvalues are complex with nonpositive real

component –> origin is spirally stable (spiral sink)
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Alternative Correspondence

the stability may also be classified based on the
determinant and trace of A
this is because

pA(x) = x2 − tr(A)x + det(A).

five possibilities:
(1) tr(A)2 > 4 det(A) and det(A) < 0 –> saddle
(2) tr(A)2 > 4 det(A), det(A) > 0, and tr(A) > 0 –> unstable
(3) tr(A)2 > 4 det(A), det(A) > 0, and tr(A) < 0 –>

exponentially stable
(4) tr(A)2 < 4 det(A) and tr(A) ≤ 0 –> spirally stable
(5) tr(A)2 < 4 det(A) and tr(A) > 0 –> spirally unstable
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Stability Picture

Figure: Picture of Classification (DR Hundley, Whitman College)
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Summary!

What we did today:
Complex Eigenvalues
Stability of the Origin

Plan for next time:
Fundamental Matrix
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