Math 309 Quiz 5 (Groups)

May 25, 2016

Problem 1. Consider the wave problem

$$
u_{tt} = c2 u_{xx}
$$

$$
u(0, t) = 0, \quad u(L, t) = 0
$$

$$
u(x, 0) = 0, \quad u_t(x, 0) = g(x)
$$

where here

$$
g(x) = \begin{cases} 4x/L, & 0 \le x < L/4 \\ 1, & L/4 \le x < 3L/4 \\ 4(L-x)/L & 3L/4 \le x \le L \end{cases}
$$

(a) Find a solution to the wave equation of the form

$$
u(x,t) = \sum_{n=1}^{\infty} a_n \sin(n\pi ct/L) \sin(n\pi x/L)
$$

for some constants a_n

(b) If the vibration of a string is described by $u(x, t)$ as in (a)then the energy in frequency $\omega_n = n/(2L)$ is given by

$$
E_n = \frac{1}{2} K c^2 n a_n^2
$$

where K is some constant having to do with the material properties of the string. Use your answer in (a) to plot the energy E_n as a function of the frequency f_n (take $K = 1, c = 1$). In which frequency is the energy largest? What happens to the energy as $n \to \infty$?

Solution 1.

(a) Recall that the a_n are related to the coefficients in the sine series expansion of $f(x)$, so we calculate that first. To do so, we reflect $g(x)$ oddly and then extend it 2L-periodically, and take the Fourier transform. Doing so, we have that

$$
g(x) = \sum_{n=1} q_n \sin(n\pi x/L)
$$

where

$$
q_n = \frac{1}{L} \int_{-L}^{L} g(x) \sin(n\pi x/L) = \frac{2}{L} \int_{0}^{L} g(x) \sin(n\pi x/L) dx.
$$

Then since $g(x)$ is continuous with piecewise continuous first derivative, we may use integration by parts:

$$
\int_0^L g(x) \sin(n\pi x/L) dx = \frac{-L}{n\pi} g(x) \cos(n\pi x/L) \Big|_0^L + \frac{L}{n\pi} \int_0^L g'(x) \cos(n\pi x/L) dx = \frac{L}{n\pi} \int_0^L g'(x) \cos(n\pi x/L) dx
$$

Then since

$$
g'(x) = \begin{cases} 4/L, & 0 \le x < L/4 \\ 0, & L/4 \le x < 3L/4 \\ -4/L & 3L/4 \le x \le L \end{cases}
$$

we have that

$$
\frac{L}{n\pi} \int_0^L g'(x) \cos(n\pi x/L) dx = \frac{L}{n\pi} \left(\int_0^{L/4} \frac{4}{L} \cos(n\pi x/L) dx + \int_{3L/4}^L \frac{-4}{L} \cos(n\pi x/L) dx \right) = \frac{4L}{n^2 \pi^2}
$$

Therefore we see

$$
q_n = \frac{8}{n^2 \pi^2} \left(\sin(n\pi/4) + \sin(3n\pi/4) \right).
$$

Then the a_n from the statement of the problem are related to the q_n that we just calculated by $a_n = q_n \frac{L}{n\pi}$ $\frac{L}{n\pi c}$. Consequently we find

$$
a_n = \frac{8L}{n^3 \pi^3 c} \left(\sin(n\pi/4) + \sin(3n\pi/4) \right).
$$

(b) The energy in frequency $\omega_n = n/(2L)$ is given by

$$
E_n = \frac{1}{2} K \frac{64L^2}{n^5 \pi^6} \left(\sin(n\pi/4) + \sin(3n\pi/4) \right)^2
$$

Plotting E_n with respect to ω_n , we get the following graph:

In particular, the most energy is in the lowest frequency, and the energy in each frequency dies off rapidly as $\omega_n \to \infty$.

Problem 2. Consider the same wave problem as in Problem 1

- (a) Use the method of d'Alembert to find a solution of the wave problem in Problem 1, with $c = 4$ and $L = 1$.
- (b) Plot $u(x, 1/8)$.

Solution 2.

(a) To use d'Alembert's method, we extend $g(x)$ oddly and 2L-periodically. Therefore the integral $G(x)$ of $g(x)$ will be even and 2-periodic, with

$$
G(x) = \begin{cases} 2x^2, & 0 \le x < 1/4 \\ x - 1/8, & 1/4 \le x < 3/4 \\ -5/4 + 4x - 2x^2, & 3/4 \le x \le 1 \end{cases}
$$

Since $c = 4$, the solution is then:

$$
u(x,t) = \frac{1}{2c}(G(x+4t) - G(x-4t)).
$$

(b) From (a), we have that

$$
u(x, 1/8) = \frac{1}{8}(G(x + 1/2) - G(x - 1/2)),
$$

which is an eighth of the difference of $G(x)$ shifted to the left by $1/2$ and $G(x)$ shifted to the right by 1/2. A plot of $G(x)$ (which again is even and 2-periodic) and the shifted functions $G(x + 1/2)$ and $G(x - 1/2)$ is:

Then to get the solution, we take $G(x + 1/2)$, subtract $G(x - 1/2)$, multiply by 1/8, and restrict once more to the domain $0 \le x \le 1$. Below is a graph of $G(x+1/2)$ and $G(x-1/2)$ in the domain $0 \le x \le 1$ along with $u(x, 1/8) = \frac{1}{8}(G(x + 1/2) - G(x - 1/2)).$

