MATH 309: Homework #2

Due on: April 17, 2017

Problem 1 Jordan Normal Form

For each of the following values of the matrix A, find an invertible matrix P and a matrix N in Jordan normal form such that $P^{-1}AP = N$.

(a)	$A = \left(\begin{array}{cc} 1 & 1\\ 0 & 1 \end{array}\right)$	(f)	$A = \left(\begin{array}{rrrr} 0 & 0 & 24 \\ 1 & 0 & 2 \\ 0 & 1 & -5 \end{array}\right)$
(b)	$A = \left(\begin{array}{rrr} 1 & -1\\ 1 & 2 \end{array}\right)$	(g)	$A = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & -3 \end{pmatrix}$
(c)	$A = \left(\begin{array}{rr} 1 & 1\\ -1 & 1 \end{array}\right)$	(h)	$\begin{pmatrix} 0 & 1 & -3 \end{pmatrix}$
(d)	$A = \left(\begin{array}{cc} 0 & 1\\ 1 & -2 \end{array}\right)$	(i)	$A = \left(\begin{array}{rrr} 1 & 0 & 3\\ 0 & 1 & 0 \end{array}\right)$
(e)	$A = \left(\begin{array}{cc} 0 & -1\\ 1 & -2 \end{array}\right)$		$A = \left(\begin{array}{rrrr} -1 & -1 & 0 \\ 4 & 3 & 0 \\ -6 & -3 & 1 \end{array}\right)$

Problem 2 Matrix Exponential

For each of the values of the matrix A in the previous problem, determine the value of $\exp(At)$

.

Problem 3 Fundamental Matrix

Find a fundamental matrix for each of the following systems of equations

	y' = x - y		y' = 8x - 4y
	x' = -x - 4y		x' = 4x - 8y
(d)			
	y' = 4x - 2y	(g)	
	x' = x + y		9 9
(c)			x = 3x - 4y $y' = x - y$
	y' = x - y		/ 9 4
	x' = -x - 4y	(f)	
(b)			
	y' = x - y		$\begin{aligned} x &= x - y \\ y' &= 5x - 3y \end{aligned}$
	x' = x + y		x' = x u
(a)		(e)	

Problem 4 Uniqueness of Fundamental Matrix

Let A(t) be a matrix continuous on the interval (α, β) . Show that if $\Psi(t)$ and $\Phi(t)$ are two fundamental matrices for the equation

$$\vec{y}'(t) = A(t)\vec{y}(t)$$

on the interval (α, β) , then there exists a (constant) invertible matrix P so that $\Phi(t) = \Psi(t)P$.

• • • • • • • • •