
MATH 309: Homework #2

Due on: April 17, 2017

Problem 1 Jordan Normal Form

For each of the following values of the matrix A, find an invertible matrix P and a
matrix N in Jordan normal form such that P−1AP = N .

(a)

A =

(
1 1
0 1

)
(b)

A =

(
1 −1
1 2

)
(c)

A =

(
1 1
−1 1

)
(d)

A =

(
0 1
1 −2

)
(e)

A =

(
0 −1
1 −2

)

(f)

A =

 0 0 24
1 0 2
0 1 −5


(g)

A =

 0 0 −1
1 0 −3
0 1 −3


(h)

A =

 0 0 −2
1 0 3
0 1 0


(i)

A =

 −1 −1 0
4 3 0
−6 −3 1


. . . . . . . . .

Solution 1.

(a) The matrix A is already in Jordan normal form, so we can take P = I and N = A.

(b) The characteristic polynomial is pA(x) = x2−3x+3. The eigenvalues are therefore
(3/2)±i

√
3/2. Therefore the matrix is diagonalizable, eg. its Jordan normal form

N will be a diagonal matrix. Finding an eigenvector for each eigenvalue, we get

P =

(
(−1/2) + i

√
3/2 (−1/2)− i

√
3/2

1 1

)
, N =

(
(3/2) + i

√
3/2 0

0 (3/2)− i
√

3/2

)
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(c) The characteristic polynomial is pA(x) = x2−2x+2. The eigenvalues are therefore
1± i. Therefore the matrix is diagonalizable, eg. its Jordan normal form N will
be a diagonal matrix. Finding an eigenvector for each eigenvalue, we get

P =

(
i −i
−1 −1

)
, N =

(
1 + i 0

0 1− i

)
(d) The charcteristic polynomial is pA(x) = x2+2x−1. The eigenvalues are therefore
−1±

√
2. Therefore the matrix is diagonalizable, eg. its Jordan normal form N

will be a diagonal matrix. Finding an eigenvector for each eigenvalue, we get

P =

(
1 +
√

2 1−
√

2
1 1

)
, N =

(
−1 +

√
2 0

0 −1−
√

2

)

(e) The characteristic polynomial is pA(x) = x2 + 2x+ 1. The eigenvalue is −1 with
algebraic multiplicity two. However the geometric multiplicity is one and so N
will be a 2 × 2 Jordan block N = J2(−1). Note that any nonzero vector in R2

will be a generalized eigenvector, since (A − (−1)I)2 = 0. Note that ~v =
(
1
0

)
is

not an eigenvector of A, and so it must be a generalized eigenvector of rank 2.
This means that

~w := (A− (−1)I)~v =

(
1

1

)
is an eigenvector of A with eigenvalue −1. Thus we may take

P =

(
1 1
1 0

)
, N = J2(−1) =

(
−1 1
0 −1

)
(f) The characteristic polynomial of this matrix is pA(x) = −x3 − 5x2 + 2x + 24 =
−(x − 2)(x + 3)(x + 4). The eigenvalues are therefore 2,−3,−4. The matrix is
therefore diagonalizable, eg. its Jordan form N will be a diagonal matrix. Finding
an eigenvector for each eigenvalue, we get

P =

 12 −8 −6
7 2 1
1 1 1

 , N =

 2 0 0
0 −3 0
0 0 −4


(g) The characteristic polynomial of this matrix is pA(x) = −x3 − 3x2 − 3x − 1 =
−(x + 1)3. The eigenvalue is therefore −1 with algebraic multiplicity 3. We
calculate the corresponding eigenspace

E−1(A) = N(A− (−1)I)) = span


 1

2
1

 .
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Therefore the geometric multiplicity is 1. It follows that the Jordan normal form
of A is a 3 × 3 Jordan block N = J3(−1). We find a generalized eigenvector of
rank 2 by solving

(A− (−1)I)~v =

 1
2
1


A solution is

~v =

 1
1
0

 .

We also need a generalized eigenvector of rank 3 in this case, which we obtain by
solving the equation

(A− (−1)I)~v =

 1
1
0

 .

A solution is

~v =

 1
0
0


Putting this all together, we have

P =

 1 1 1
2 1 0
1 0 0

 , N = J3(−1) =

 −1 1 0
0 −1 1
0 0 −1


(h) The characteristic polynomial is pA(x) = −x3 + 3x − 2 = (x − 1)2(x + 2). We

calculate the corresponding eigenspaces

E−2(A) = span


 1
−2
1


E1(A) = span


 2
−1
−1


In particular, this shows that 1 has algebraic multiplicity two but geometric
multiplicity 1, and so we must still find a generalized eigenvector of rank two
with eigenvalue 1. We can do this by solving the equation

(A− (1)I)~v =

 2
−1
−1

 .

A solution is given by

~v =

 0
−2
−1

 .
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Putting this all together we have

P =

 1 2 0
−2 −1 −2
1 −1 −1

 , N =

 −2 0 0
0 1 1
0 0 1

 .

(i) The characteristic polynomial of A is pA(x) = −(x − 1)3, and therefore we have
the eigenvalue 1 with algebraic multiplicity three. Furthermore, we calculate the
eigenspace

E1(A) = span


 1
−2
0

 ,

 0
0
1


Therefore the geometric multiplicity of 1 is two. This means that we need to find
a generalized eigenvector of rank 2. How can we do this? We can try to solve

(A− (1)I)~v =

 1
−2
0


but we find that this has no solution. Similarly can try to solve

(A− (1)I)~v =

 0
0
1

 ,

but again this has no solution. What’s the deal? The answer is we need to
choose the “right” basis for the eigenspace E1(A). The way to do this is to find a
generalized eigenvector first, and then find the regular eigenvectors after. Finding
a generalized eigenvector is easy, actually. One may check that (A− (1)I)2 = 0,
and therefore every nonzero vector in R3 is a generalized eigenvector of A with
eigenvalue λ. Choose any one that is not already an eigenvector of A, say

~v =

 1
0
0

 .

Then we know that ~v is a generalized eigenvector of A, and therefore must have
rank 2. Now if we define ~w by

~w := (A− (1)I)~v =

 −2
4
−6


then ~w is an eigenvector of A with eigenvalue 1. Finally if we choose any other

eigenvector ~e to complete a basis for E1(A) (e.g. ~e =

 0
0
1

 but it doesn’t matter

MATH 309 HW # 2



Problem 2 5

which), we have the three vectors which will work as the column vectors for P :

P = (~e ~v ~w) =

 −2 1 0
4 0 0
−6 0 1

 , N =

 1 1 0
0 1 0
0 0 1

 .

Note here that the positioning of the column vectors in P is delicate and impor-
tant. The generalized eigenvectors corresponding to a particular Jordan block
need to be positioned in order of increasing rank.

Problem 2 Matrix Exponential

For each of the values of the matrix A in the previous problem, determine the value
of exp(At)

. . . . . . . . .

Solution 2.

(a) We have the same eigenvalue 1, repeated twice, so

exp(At) = et(I + (A− I)t) =

(
et tet

0 et

)
(b) We have two complex eigenvalues a± ib for a = 3/2 and b =

√
3/2, and therefore

exp(At) = e(3/2)t cos((
√
3/2)t)I + e(3/2)t

2√
3
(A− (3/2)I) sin((

√
3/2)t)

=

(
e(3/2)t cos((

√
3/2)t) + (−1/

√
3)e(3/2)t sin((

√
3/2)t) (−5/

√
3)e(3/2)t sin((

√
3/2)t)

(−1/
√
3)e(3/2)t sin((

√
3/2)t) e(3/2)t cos((

√
3/2)t) + (1/

√
3)e(3/2)t sin((

√
3/2)t)

)

(c) We have two complex eigenvalues a± ib for a = 1 and b = 1, and therefore

exp(At) = et cos(t)I + et(A− (1)I) sin(t) =

(
et cos(t) et sin(t)
−et sin(t) et cos(t)

)
(d) The eigenvalues are real and distinct, given by r1 = −1 +

√
2 and r2 = −1−

√
2

and therefore

exp(At) =
1

2
√
2
e(−1+

√
2)t(A− (−1−

√
2)I)− 1

2
√
2
e(−1−

√
2)t(A− (−1 +

√
2)I)

=
1

2
√
2

(
(1 +

√
2)e(−1+

√
2)t − (1−

√
2)e(−1−

√
2)t e(−1+

√
2)t − e(−1−

√
2)t

e(−1+
√
2)t − e(−1−

√
2)t (−1 +

√
2)e(−1+

√
2)t − (−1−

√
2)e(−1−

√
2)t

)

(e) The eigenvalue of A is −1 repeated twice. Therefore

exp(At) = e−t(I + (A− (−1)I)t) =

(
e−t + te−t −te−t
te−t e−t − te−t

)
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(f) The eigenvalues of A are r1 = 2, r2 = −3, r3 = −4. These are all distinct, so by
Sylvester’s formula we have that

exp(At) = er1t
1

(r1 − r2)(r1 − r3)
(A− r2I)(A− r3I)

+ er2t
1

(r2 − r1)(r2 − r3)
(A− r1I)(A− r3I)

+ er3t
1

(r3 − r1)(r3 − r2)
(A− r1I)(A− r2I)

=
1

30
e2t(A+ 3I)(A+ 4I)− 1

5
e−3t(A− 2I)(A+ 4I) + e−4t

1

6
(A− 2I)(A+ 3I)

Calculating this we get the matrix (12/30)e2t + (8/5)e−3t − (6/6)e−4t (24/30)e2t − (24/5)e−3t + (24/6)e−3t (48/30)e2t + (72/5)e−3t − (96/6)e−3t

(7/30)e2t − (2/5)e−3t + (1/6)e−4t (14/30)e2t + (6/5)e−3t − (4/6)e−3t (28/30)e2t − (18/5)e−3t + (16/6)e−3t

(1/30)e2t − (1/5)e−3t + (1/6)e−4t (2/30)e2t + (3/5)e−3t − (4/6)e−3t (4/30)e2t − (9/5)e−3t + (16/6)e−3t


(g) The eigenvalues of this matrix are all −1 (repeated three times). Therefore

exp(At) = e−t(I+(A−(−1)I)t+
1

2
(A−(−1)I)2t2) = e−t

 1 + t+ 1
2
t2 −1

2
t2 −t+ 1

2
t2

t+ t2 1 + t− t2 −3t+ t2
1
2
t2 t− 1

2
t2 1− 2t+ 1

2
t2


(h) The eigenvalues of this matrix are −2, and 1 twice repeated. We calculate the

matrix exponential using the Jordan normal form found in Problem 1 part (h).
To remind ourselves, P−1AP = N with

P =

 1 2 0
−2 −1 −2
1 −1 −1

 , N =

 −2 0 0
0 1 1
0 0 1

 .

From this we have
exp(At) = P exp(Nt)P−1

where

exp(Nt) =

 e−2t 0 0
0 et tet

0 0 et


Therefore since

P−1 =

 1/9 −2/9 4/9
4/9 1/9 −2/9
−3/9 −3/9 −3/9


the answer is P exp(Nt)P−1, the calculation of which we leave to the reader.

(i) In this case the eigenvalues of A are 1 (repeated three times). Therefore

exp(At) = e−t(I + (A− (1)I)t+
1

2
(A− (1)I)2t2) = et

 1− 2t −t 0
4t 1 + 2t 0
−6t −3t 1
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Problem 3 Fundamental Matrix

Find a fundamental matrix for each of the following systems of equations

(a)

x′ = x+ y

y′ = x− y

(b)

x′ = −x− 4y

y′ = x− y

(c)

x′ = x+ y

y′ = 4x− 2y

(d)

x′ = −x− 4y

y′ = x− y

(e)

x′ = x− y
y′ = 5x− 3y

(f)

x′ = 3x− 4y

y′ = x− y

(g)

x′ = 4x− 8y

y′ = 8x− 4y

. . . . . . . . .

Solution 3.

(a) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are ±
√

2.
Therefore we get that

Ψ(t) = exp(At) =
1

2
√

2

(
(1 +

√
2)e
√
2t − (1−

√
2)e−

√
2t e

√
2t − e−

√
2t

e
√
2t − e−

√
2t (−1 +

√
2)e
√
2t − (−1−

√
2)e−

√
2t

)

(b) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are −1 ± 2i.
Therefore we get that

Ψ(t) = exp(At) =

(
e−t cos(2t) −2e−t sin(2t)

(1/2)e−t sin(2t) e−t cos(2t)

)
(c) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are 2 and −3.

Therefore we get that

Ψ(t) = exp(At) =
1

5

(
4e2t + e−3t e2t − e−3t
4e2t − 4e−3t e2t + 4e−3t

)
(d) This is a repeat of (b)
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(e) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are −1 ± i.
Therefore we get that

Ψ(t) = exp(At) =

(
e−t cos(t) + 2e−t sin(t) −e−t sin(t)

5e−t sin(t) e−t cos(t)− 2e−t sin(t)

)
(f) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are 1, repeated

twice. Therefore

Ψ(t) = exp(At) = et(I + (A− I)t) = et
(
et + 2tet −4tet

tet et − 2tet

)

(g) We write the equation in the form ~y′(t) = A~y(t). The eigenvalues are ±4
√

3.
Therefore

Ψ(t) = exp(At) =
1

8
√

3

(
(4 + 4

√
3)e4

√
3t − (4− 4

√
3)e−4

√
3t −8e4

√
3t + 8e−4

√
3t

8e4
√
3t − 8e−4

√
3t (−4 + 4

√
3)e4

√
3t − (−4− 4

√
3)e−4

√
3t

)

Problem 4 Uniqueness of Fundamental Matrix

Let A(t) be a matrix continuous on the interval (α, β). Show that if Ψ(t) and Φ(t)
are two fundamental matrices for the equation

~y′(t) = A(t)~y(t)

on the interval (α, β), then there exists a (constant) invertible matrix P so that
Φ(t) = Ψ(t)P .

. . . . . . . . .

Solution 4. This is a tricky problem again – its solution will also be extra credit.
Let Ψ(t) and Φ(t) be two fundamental matrices for the equation, and choose t0 ∈
(α, β). Set P = Ψ(t0)

−1Φ(t0). Then Φ(t0) = Ψ(t0)P . Moreover, the column vectors of
Φ(t) and Ψ(t) are solutions to ~y′(t) = A(t)~y(t) (because they must form a fundamental
set of solutions). The value of the first column of Φ(t) at t = t0 agrees with the value
of the first column of Ψ(t)P at t = t0. Therefore they both satisfy the same initial
value problem, and by the Existence and Uniqueness Theorem this guarantees that
they are equal for all t in the interval (α, β). The same argument in fact applies to
the second column of each fundamental matrix, as well as the third, etc. Therefore
Φ(t) = Ψ(t)P for all values of t.
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